文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工神经网络在预测类药物分子固有溶解度中的应用。

Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like Molecules.

作者信息

Tosca Elena M, Bartolucci Roberta, Magni Paolo

机构信息

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, I-27100 Pavia, Italy.

出版信息

Pharmaceutics. 2021 Jul 20;13(7):1101. doi: 10.3390/pharmaceutics13071101.


DOI:10.3390/pharmaceutics13071101
PMID:34371792
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8309152/
Abstract

Machine learning (ML) approaches are receiving increasing attention from pharmaceutical companies and regulatory agencies, given their ability to mine knowledge from available data. In drug discovery, for example, they are employed in quantitative structure-property relationship (QSPR) models to predict biological properties from the chemical structure of a drug molecule. In this paper, following the Second Solubility Challenge (SC-2), a QSPR model based on artificial neural networks (ANNs) was built to predict the intrinsic solubility () of the 100-compound low-variance tight set and the 32-compound high-variance loose set provided by SC-2 as test datasets. First, a training dataset of 270 drug-like molecules with value experimentally determined was gathered from the literature. Then, a standard three-layer feed-forward neural network was defined by using 10 ChemGPS physico-chemical descriptors as input features. The developed ANN showed adequate predictive performances on both of the SC-2 test datasets. Benefits and limitations of ML approaches have been highlighted and discussed, starting from this case-study. The main findings confirmed that ML approaches are an attractive and promising tool to predict ; however, many aspects, such as data quality, molecular descriptor computation and selection, and assessment of applicability domain, are crucial but often neglected, and should be carefully considered to improve predictions based on ML.

摘要

鉴于机器学习(ML)方法能够从现有数据中挖掘知识,制药公司和监管机构对其的关注与日俱增。例如,在药物研发中,这些方法被应用于定量构效关系(QSPR)模型,以根据药物分子的化学结构预测其生物学特性。在本文中,继第二次溶解度挑战(SC - 2)之后,构建了一个基于人工神经网络(ANN)的QSPR模型,用于预测SC - 2提供的作为测试数据集的100化合物低方差紧密集和32化合物高方差宽松集的固有溶解度()。首先,从文献中收集了一个包含270个类药物分子的训练数据集,其值已通过实验确定。然后,使用10个ChemGPS物理化学描述符作为输入特征定义了一个标准的三层前馈神经网络。所开发的人工神经网络在两个SC - 2测试数据集上均表现出足够的预测性能。从这个案例研究出发,ML方法的优点和局限性已得到突出和讨论。主要研究结果证实,ML方法是预测的一种有吸引力且很有前景的工具;然而,许多方面,如数据质量、分子描述符的计算和选择以及适用域的评估,虽然至关重要但常常被忽视,为了改进基于ML的预测,应该仔细考虑这些方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/9f404317a648/pharmaceutics-13-01101-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/9820477ea910/pharmaceutics-13-01101-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/76b3c678d9aa/pharmaceutics-13-01101-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/52a72894dcea/pharmaceutics-13-01101-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/d9213b7cd3a4/pharmaceutics-13-01101-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/0af8d1e1f8cb/pharmaceutics-13-01101-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/9a988b6e31ac/pharmaceutics-13-01101-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/9f404317a648/pharmaceutics-13-01101-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/9820477ea910/pharmaceutics-13-01101-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/76b3c678d9aa/pharmaceutics-13-01101-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/52a72894dcea/pharmaceutics-13-01101-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/d9213b7cd3a4/pharmaceutics-13-01101-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/0af8d1e1f8cb/pharmaceutics-13-01101-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/9a988b6e31ac/pharmaceutics-13-01101-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/8309152/9f404317a648/pharmaceutics-13-01101-g007.jpg

相似文献

[1]
Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like Molecules.

Pharmaceutics. 2021-7-20

[2]
Uniting cheminformatics and chemical theory to predict the intrinsic aqueous solubility of crystalline druglike molecules.

J Chem Inf Model. 2014-3-24

[3]
QSPR Modelling of the Solubility of Drug and Drug-like Compounds in Supercritical Carbon Dioxide.

Mol Inform. 2022-10

[4]
Development of QSPR-ANN models for the estimation of critical properties of pure hydrocarbons.

J Mol Graph Model. 2023-6

[5]
Predicting aqueous solubility by QSPR modeling.

J Mol Graph Model. 2021-7

[6]
Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?

Mol Pharm. 2015-6-1

[7]
Random forest models to predict aqueous solubility.

J Chem Inf Model. 2007

[8]
ADME prediction with KNIME: A retrospective contribution to the second "Solubility Challenge".

ADMET DMPK. 2021-7-12

[9]
Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation.

Chem Biodivers. 2004-11

[10]
Selective descriptor pruning for QSAR/QSPR studies using artificial neural networks.

J Comput Chem. 2003-5

引用本文的文献

[1]
Towards the prediction of drug solubility in binary solvent mixtures at various temperatures using machine learning.

J Cheminform. 2024-10-28

[2]
Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation.

Molecules. 2024-10-16

[3]
Predicting ADMET Properties from Molecule SMILE: A Bottom-Up Approach Using Attention-Based Graph Neural Networks.

Pharmaceutics. 2024-6-7

[4]
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen.

Molecules. 2024-5-14

[5]
Will we ever be able to accurately predict solubility?

Sci Data. 2024-3-18

[6]
Improving ADMET Prediction Accuracy for Candidate Drugs: Factors to Consider in QSPR Modeling Approaches.

Curr Top Med Chem. 2024

[7]
Predicting absolute aqueous solubility by applying a machine learning model for an artificially liquid-state as proxy for the solid-state.

J Comput Aided Mol Des. 2023-12

[8]
Go beyond the limits of genetic algorithm in daily covariate selection practice.

J Pharmacokinet Pharmacodyn. 2024-4

[9]
Why Do Dietary Flavonoids Have a Promising Effect as Enhancers of Anthracyclines? Hydroxyl Substituents, Bioavailability and Biological Activity.

Int J Mol Sci. 2022-12-26

[10]
Intrinsic Aqueous Solubility: Mechanistically Transparent Data-Driven Modeling of Drug Substances.

Pharmaceutics. 2022-10-21

本文引用的文献

[1]
Perspectives in solubility measurement and interpretation.

ADMET DMPK. 2019-4-5

[2]
Three machine learning models for the 2019 Solubility Challenge.

ADMET DMPK. 2020-6-15

[3]
Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database.

ADMET DMPK. 2020-3-4

[4]
Pushing the limits of solubility prediction via quality-oriented data selection.

iScience. 2020-12-17

[5]
Findings of the Second Challenge to Predict Aqueous Solubility.

J Chem Inf Model. 2020-10-26

[6]
Solubility Challenge Revisited after Ten Years, with Multilab Shake-Flask Data, Using Tight (SD ∼ 0.17 log) and Loose (SD ∼ 0.62 log) Test Sets.

J Chem Inf Model. 2019-5-9

[7]
Intercorrelation Limits in Molecular Descriptor Preselection for QSAR/QSPR.

Mol Inform. 2019-4-4

[8]
Can human experts predict solubility better than computers?

J Cheminform. 2017-12-13

[9]
Insoluble drug delivery strategies: review of recent advances and business prospects.

Acta Pharm Sin B. 2015-9

[10]
Is experimental data quality the limiting factor in predicting the aqueous solubility of druglike molecules?

Mol Pharm. 2014-8-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索