Suppr超能文献

基于去噪自动编码器的特征提取在稳健基于 SSVEP 的脑机接口中的应用。

Denoising Autoencoder-Based Feature Extraction to Robust SSVEP-Based BCIs.

机构信息

Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.

Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.

出版信息

Sensors (Basel). 2021 Jul 23;21(15):5019. doi: 10.3390/s21155019.

Abstract

For subjects with amyotrophic lateral sclerosis (ALS), the verbal and nonverbal communication is greatly impaired. Steady state visually evoked potential (SSVEP)-based brain computer interfaces (BCIs) is one of successful alternative augmentative communications to help subjects with ALS communicate with others or devices. For practical applications, the performance of SSVEP-based BCIs is severely reduced by the effects of noises. Therefore, developing robust SSVEP-based BCIs is very important to help subjects communicate with others or devices. In this study, a noise suppression-based feature extraction and deep neural network are proposed to develop a robust SSVEP-based BCI. To suppress the effects of noises, a denoising autoencoder is proposed to extract the denoising features. To obtain an acceptable recognition result for practical applications, the deep neural network is used to find the decision results of SSVEP-based BCIs. The experimental results showed that the proposed approaches can effectively suppress the effects of noises and the performance of SSVEP-based BCIs can be greatly improved. Besides, the deep neural network outperforms other approaches. Therefore, the proposed robust SSVEP-based BCI is very useful for practical applications.

摘要

对于肌萎缩侧索硬化症(ALS)患者,言语和非言语交流受到严重损害。基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)是帮助 ALS 患者与他人或设备进行交流的一种成功的替代辅助沟通方式。在实际应用中,SSVEP-BCI 的性能受到噪声的严重影响。因此,开发稳健的 SSVEP-BCI 对于帮助患者与他人或设备进行交流非常重要。在这项研究中,提出了一种基于噪声抑制的特征提取和深度神经网络,以开发稳健的 SSVEP-BCI。为了抑制噪声的影响,提出了一种去噪自动编码器来提取去噪特征。为了获得可接受的实际应用识别结果,使用深度神经网络来找到 SSVEP-BCI 的决策结果。实验结果表明,所提出的方法可以有效地抑制噪声的影响,并且可以大大提高 SSVEP-BCI 的性能。此外,深度神经网络优于其他方法。因此,所提出的稳健的 SSVEP-BCI 在实际应用中非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0fd/8347742/70e6d5362815/sensors-21-05019-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验