Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
Sensors (Basel). 2021 Jul 23;21(15):5019. doi: 10.3390/s21155019.
For subjects with amyotrophic lateral sclerosis (ALS), the verbal and nonverbal communication is greatly impaired. Steady state visually evoked potential (SSVEP)-based brain computer interfaces (BCIs) is one of successful alternative augmentative communications to help subjects with ALS communicate with others or devices. For practical applications, the performance of SSVEP-based BCIs is severely reduced by the effects of noises. Therefore, developing robust SSVEP-based BCIs is very important to help subjects communicate with others or devices. In this study, a noise suppression-based feature extraction and deep neural network are proposed to develop a robust SSVEP-based BCI. To suppress the effects of noises, a denoising autoencoder is proposed to extract the denoising features. To obtain an acceptable recognition result for practical applications, the deep neural network is used to find the decision results of SSVEP-based BCIs. The experimental results showed that the proposed approaches can effectively suppress the effects of noises and the performance of SSVEP-based BCIs can be greatly improved. Besides, the deep neural network outperforms other approaches. Therefore, the proposed robust SSVEP-based BCI is very useful for practical applications.
对于肌萎缩侧索硬化症(ALS)患者,言语和非言语交流受到严重损害。基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)是帮助 ALS 患者与他人或设备进行交流的一种成功的替代辅助沟通方式。在实际应用中,SSVEP-BCI 的性能受到噪声的严重影响。因此,开发稳健的 SSVEP-BCI 对于帮助患者与他人或设备进行交流非常重要。在这项研究中,提出了一种基于噪声抑制的特征提取和深度神经网络,以开发稳健的 SSVEP-BCI。为了抑制噪声的影响,提出了一种去噪自动编码器来提取去噪特征。为了获得可接受的实际应用识别结果,使用深度神经网络来找到 SSVEP-BCI 的决策结果。实验结果表明,所提出的方法可以有效地抑制噪声的影响,并且可以大大提高 SSVEP-BCI 的性能。此外,深度神经网络优于其他方法。因此,所提出的稳健的 SSVEP-BCI 在实际应用中非常有用。