Suppr超能文献

一种用于鉴定牛奶磷酸化代谢物和快速鉴别牛奶样品的有前景的磷核磁共振多变量分析方法。

A promising P NMR-multivariate analysis approach for the identification of milk phosphorylated metabolites and for rapid authentication of milk samples.

作者信息

Bruschetta Giuseppe, Notti Anna, Lando Gabriele, Ferlazzo Alida

机构信息

Department of Veterinary Sciences, Biochemistry Unit, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.

Department of Chemical,Biological, Pharmaceutical and Environmental Sciences, Contrada Papardo, Viale F. Stagnod'Alcontres 31, 98166 Messina, Italy.

出版信息

Biochem Biophys Rep. 2021 Jul 28;27:101087. doi: 10.1016/j.bbrep.2021.101087. eCollection 2021 Sep.

Abstract

A fast and reliable method for the identification of milk from different mammalians was developed by using P NMR metabolite profile of milk serum coupled to multivariate analysis (PCA and classification models UNEQ, SIMCA and K-NN). Ten milk samples from six different mammalians, relevant to human nutrition (human, cow, donkey, mare, goat, sheep), were analyzed and eight monophosphorylated components were identified and quantified: phosphocreatine (PCr), glycerophosphorylcholine (GPC), glycerophosphorylethanolamine (GPE), -acetylglucosamine-1-phosphate (NAcGlu-1P), lactose-1-phosphate (Lac-1P), galactose-1-phosphate (Gal-1P), phosphorylcholine (PC), glucose-6-phosphate (Glu-6P). PCA showed interesting clustering based on the animal genus. K-NN can be successfully used to discriminate between donkey and cow samples while UNEQ class-modeling resulted more suitable for compliance verification. Results confirm the natural variability of milk samples among different species. These data highlight the great potentials of NMR/multivariate analysis combined method in the rapid analysis of phosphorylated milk serum metabolites for milk origin assessment and milk adulteration detection.

摘要

通过使用乳清的磷核磁共振代谢物谱结合多变量分析(主成分分析以及分类模型UNE、软独立建模类比法和K近邻算法),开发了一种快速可靠的方法来鉴定不同哺乳动物的奶。分析了来自六种不同哺乳动物(与人类营养相关,即人、牛、驴、马、山羊、绵羊)的十个奶样,并鉴定和定量了八种单磷酸化成分:磷酸肌酸(PCr)、甘油磷酰胆碱(GPC)、甘油磷酰乙醇胺(GPE)、N-乙酰葡糖胺-1-磷酸(NAcGlu-1P)、乳糖-1-磷酸(Lac-1P)、半乳糖-1-磷酸(Gal-1P)、磷酰胆碱(PC)、葡萄糖-6-磷酸(Glu-6P)。主成分分析显示基于动物属的有趣聚类。K近邻算法可成功用于区分驴奶和牛奶样本,而UNE分类建模结果更适合合规验证。结果证实了不同物种奶样的自然变异性。这些数据突出了核磁共振/多变量分析结合方法在快速分析磷酸化乳清代谢物以评估奶的来源和检测奶掺假方面的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/969c/8339344/2878fa9f3f59/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验