Samarasinghe Kusal T G, Munkanatta Godage Dhanushka N P, Zhou Yani, Ndombera Fidelis T, Weerapana Eranthie, Ahn Young-Hoon
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA.
Mol Biosyst. 2016 Jul 19;12(8):2471-80. doi: 10.1039/c6mb00175k.
Glucose metabolism and mitochondrial function are closely interconnected with cellular redox-homeostasis. Although glucose starvation, which mimics ischemic conditions or insufficient vascularization, is known to perturb redox-homeostasis, global and individual protein glutathionylation in response to glucose metabolism or mitochondrial activity remains largely unknown. In this report, we use our clickable glutathione approach, which forms clickable glutathione (azido-glutathione) by using a mutant of glutathione synthetase (GS M4), for detection and identification of protein glutathionylation in response to glucose starvation. We found that protein glutathionylation is readily induced in HEK293 cells in response to low glucose concentrations when mitochondrial reactive oxygen species (ROS) are elevated in cells, and glucose is the major determinant for inducing reversible glutathionylation. Proteomic and biochemical analysis identified over 1300 proteins, including SMYD2, PP2Cα, and catalase. We further showed that PP2Cα is glutathionylated at C314 in a C-terminal domain, and PP2Cα C314 glutathionylation disrupts the interaction with mGluR3, an important glutamate receptor associated with synaptic plasticity.
葡萄糖代谢和线粒体功能与细胞氧化还原稳态密切相关。尽管模拟缺血状态或血管生成不足的葡萄糖饥饿已知会扰乱氧化还原稳态,但响应葡萄糖代谢或线粒体活性的全局和个体蛋白质谷胱甘肽化情况仍 largely 未知。在本报告中,我们使用可点击谷胱甘肽方法,即通过使用谷胱甘肽合成酶(GS M4)的突变体形成可点击谷胱甘肽(叠氮基谷胱甘肽),来检测和鉴定响应葡萄糖饥饿的蛋白质谷胱甘肽化。我们发现,当细胞中线粒体活性氧(ROS)升高时,低葡萄糖浓度会在 HEK293 细胞中轻易诱导蛋白质谷胱甘肽化,且葡萄糖是诱导可逆谷胱甘肽化的主要决定因素。蛋白质组学和生化分析鉴定出了 1300 多种蛋白质,包括 SMYD2、PP2Cα 和过氧化氢酶。我们进一步表明,PP2Cα 在 C 末端结构域的 C314 处发生谷胱甘肽化,且 PP2Cα C314 谷胱甘肽化会破坏与 mGluR3 的相互作用,mGluR3 是一种与突触可塑性相关的重要谷氨酸受体。