Integrated Bioprocess Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India; Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
Chemosphere. 2022 Jan;286(Pt 3):131847. doi: 10.1016/j.chemosphere.2021.131847. Epub 2021 Aug 9.
The current study aimed in enhancing the efficiency of alkaline treatment for CECs remediation in biosolids through the application of RSM and ANN. Due to the seasonal variation of CECs in biosolids, a complete CECs profile over a period of three years were performed. Out of 64 targeted CECs, 13 PhACs (70.1 μg/kg) and 10 pesticides (57.2 μg/kg) were detected in biosolids. In order to enhance the remediation efficiency of CECs by alkaline treatment, process parameters - pH (9.0-13.0), time (3.0-12.0 h) and biosolids age (1-28 days) were optimized by statistical modelling. Using Box-Behnken design, experiments were designed and the resultant data was employed as input for model building using RSM and ANN. The developed mathematical model for alkaline treatment of biosolids using ANN predicted CECs removal with 3.2-fold lower MSE and exhibited high regression coefficient (R > 0.99) than the conventional RSM model. Further, the multiparameter model was optimized for achieving maximum of 95.7 % CECs removal using ANN-GA. On analyzing the acute toxicity of alkaline treated residual biosolids under the optimized conditions, a reduction in LC50 by an average of 2.1-fold than initial biosolids was observed. This study not only established the application of statistical modelling in the development of an efficient remediation strategy for biosolids, which can be further applied for large-scale remediation process, but also proved the reliability and efficiency of ANN-GA.
本研究旨在通过响应面法(RSM)和人工神经网络(ANN)的应用,提高生物固体中持久性有机污染物修复的碱处理效率。由于生物固体中持久性有机污染物的季节性变化,我们进行了为期三年的全面持久性有机污染物分析。在 64 种目标持久性有机污染物中,生物固体中检测到 13 种(70.1μg/kg)抗生素和 10 种(57.2μg/kg)农药。为了提高碱性处理对持久性有机污染物的修复效率,通过统计建模优化了工艺参数 - pH 值(9.0-13.0)、时间(3.0-12.0h)和生物固体龄(1-28 天)。利用 Box-Behnken 设计,设计了实验,并将所得数据作为 RSM 和 ANN 模型构建的输入。使用 ANN 开发的生物固体碱性处理数学模型预测持久性有机污染物去除率,其均方误差(MSE)低 3.2 倍,回归系数(R>0.99)高于传统 RSM 模型。此外,使用 ANN-GA 对多参数模型进行了优化,以达到 95.7%的最大持久性有机污染物去除率。在分析优化条件下碱性处理后剩余生物固体的急性毒性时,发现 LC50 平均降低了 2.1 倍。本研究不仅建立了统计建模在生物固体高效修复策略开发中的应用,该策略可进一步应用于大规模修复过程,而且还证明了 ANN-GA 的可靠性和效率。