Suppr超能文献

在. 的小干扰 RNA 扩增过程中,RDR6 通过 SGS3 和 SDE5 的协同招募

Cooperative recruitment of RDR6 by SGS3 and SDE5 during small interfering RNA amplification in .

机构信息

Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan;

Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.

出版信息

Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2102885118.

Abstract

Small interfering RNAs (siRNAs) are often amplified from transcripts cleaved by RNA-induced silencing complexes (RISCs) containing a small RNA (sRNA) and an Argonaute protein. Amplified siRNAs, termed secondary siRNAs, are important for reinforcement of target repression. In plants, target cleavage by RISCs containing 22-nucleotide (nt) sRNA and Argonaute 1 (AGO1) triggers siRNA amplification. In this pathway, the cleavage fragment is converted into double-stranded RNA (dsRNA) by RNA-dependent RNA polymerase 6 (RDR6), and the dsRNA is processed into siRNAs by Dicer-like proteins. Because nonspecific RDR6 recruitment causes nontarget siRNA production, it is critical that RDR6 is specifically recruited to the target RNA that serves as a template for dsRNA formation. Previous studies showed that Suppressor of Gene Silencing 3 (SGS3) binds and stabilizes 22-nt sRNA-containing AGO1 RISCs associated with cleaved target, but how RDR6 is recruited to targets cleaved by 22-nt sRNA-containing AGO1 RISCs remains unknown. Here, using cell-free extracts prepared from suspension-cultured cells, we established an in vitro system for secondary siRNA production in which 22-nt siRNA-containing AGO1-RISCs but not 21-nt siRNA-containing AGO1-RISCs induce secondary siRNA production. In this system, addition of recombinant Silencing Defective 5 (SDE5) protein remarkably enhances secondary siRNA production. We show that RDR6 is recruited to a cleavage fragment by 22-nt siRNA-containing AGO1-RISCs in coordination with SGS3 and SDE5. The SGS3-SDE5-RDR6 multicomponent recognition system and the poly(A) tail inhibition may contribute to securing specificity of siRNA amplification.

摘要

小干扰 RNA(siRNA)通常从 RNA 诱导沉默复合物(RISC)切割的转录本中扩增而来,该复合物包含小 RNA(sRNA)和 Argonaute 蛋白。扩增的 siRNA 被称为次级 siRNA,对于增强靶基因抑制非常重要。在植物中,由包含 22 个核苷酸(nt)的 sRNA 和 Argonaute 1(AGO1)的 RISC 切割靶标会触发 siRNA 扩增。在这条途径中,由 RNA 依赖性 RNA 聚合酶 6(RDR6)将切割片段转化为双链 RNA(dsRNA),然后由 Dicer 样蛋白将 dsRNA 加工成 siRNA。由于非特异性 RDR6 募集会导致非靶标 siRNA 的产生,因此 RDR6 特异性募集到作为 dsRNA 形成模板的靶 RNA 至关重要。先前的研究表明,基因沉默抑制物 3(SGS3)结合并稳定与切割靶标相关的包含 22nt sRNA 的 AGO1 RISC,但 RDR6 如何募集到由包含 22nt sRNA 的 AGO1 RISC 切割的靶标尚不清楚。在这里,我们使用悬浮培养细胞制备的无细胞提取物,建立了一个体外次级 siRNA 产生系统,其中包含 22nt siRNA 的 AGO1-RISC 而不是包含 21nt siRNA 的 AGO1-RISC 诱导次级 siRNA 的产生。在该系统中,添加重组沉默缺陷 5(SDE5)蛋白可显著增强次级 siRNA 的产生。我们表明,RDR6 与 SGS3 和 SDE5 一起被包含 22nt siRNA 的 AGO1-RISC 募集到切割片段。SGS3-SDE5-RDR6 多组分识别系统和 poly(A) 尾巴抑制可能有助于确保 siRNA 扩增的特异性。

相似文献

1
Cooperative recruitment of RDR6 by SGS3 and SDE5 during small interfering RNA amplification in .
Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2102885118.
2
3' fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4117-22. doi: 10.1073/pnas.1217050110. Epub 2013 Feb 15.
4
A small peptide inhibits siRNA amplification in plants by mediating autophagic degradation of SGS3/RDR6 bodies.
EMBO J. 2021 Aug 2;40(15):e108050. doi: 10.15252/embj.2021108050. Epub 2021 Jun 22.
6
Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis.
Nat Struct Mol Biol. 2010 Aug;17(8):997-1003. doi: 10.1038/nsmb.1866. Epub 2010 Jun 18.
7
Roles of dicer-like and argonaute proteins in TAS-derived small interfering RNA-triggered DNA methylation.
Plant Physiol. 2012 Oct;160(2):990-9. doi: 10.1104/pp.112.200279. Epub 2012 Jul 30.
8
RDR6-mediated synthesis of complementary RNA is terminated by miRNA stably bound to template RNA.
Nucleic Acids Res. 2012 Jan;40(2):594-9. doi: 10.1093/nar/gkr760. Epub 2011 Sep 19.
9
Primary and secondary siRNAs in geminivirus-induced gene silencing.
PLoS Pathog. 2012 Sep;8(9):e1002941. doi: 10.1371/journal.ppat.1002941. Epub 2012 Sep 27.

引用本文的文献

1
Response to "The action of Arabidopsis DICER-LIKE2 in plant growth inhibition".
Plant Cell. 2025 Aug 4;37(8). doi: 10.1093/plcell/koaf163.
4
RNA Metabolism and the Role of Small RNAs in Regulating Multiple Aspects of RNA Metabolism.
Noncoding RNA. 2024 Dec 24;11(1):1. doi: 10.3390/ncrna11010001.
5
Engineering VIGS Vectors by Modifying Movement Proteins of the 30K Family.
Biotechnol J. 2024 Dec;19(12):e202400584. doi: 10.1002/biot.202400584.
6
The biogenesis, regulation and functions of transitive siRNA in plants.
Acta Biochim Biophys Sin (Shanghai). 2024 Sep 29;57(1):131-147. doi: 10.3724/abbs.2024160.
7
DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies.
Plant Biotechnol J. 2024 Dec;22(12):3295-3311. doi: 10.1111/pbi.14448. Epub 2024 Aug 21.
8
The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development.
Int J Mol Sci. 2024 Jul 12;25(14):7680. doi: 10.3390/ijms25147680.
10
Rep and V2 Suppress Post-Transcriptional Gene Silencing via Distinct Modes of Action.
Viruses. 2023 Sep 26;15(10):1996. doi: 10.3390/v15101996.

本文引用的文献

1
The initiation of RNA interference (RNAi) in plants.
Curr Opin Plant Biol. 2021 Jun;61:102014. doi: 10.1016/j.pbi.2021.102014. Epub 2021 Feb 28.
2
Plant 22-nt siRNAs mediate translational repression and stress adaptation.
Nature. 2020 May;581(7806):89-93. doi: 10.1038/s41586-020-2231-y. Epub 2020 Apr 29.
4
The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing.
Nat Plants. 2017 Mar 20;3:17036. doi: 10.1038/nplants.2017.36.
7
RNAi in Plants: An Argonaute-Centered View.
Plant Cell. 2016 Feb;28(2):272-85. doi: 10.1105/tpc.15.00920. Epub 2016 Feb 11.
8
The Functions of MicroRNAs: mRNA Decay and Translational Repression.
Trends Cell Biol. 2015 Nov;25(11):651-665. doi: 10.1016/j.tcb.2015.07.011. Epub 2015 Oct 1.
9
RISC assembly: Coordination between small RNAs and Argonaute proteins.
Biochim Biophys Acta. 2016 Jan;1859(1):71-81. doi: 10.1016/j.bbagrm.2015.08.007. Epub 2015 Aug 22.
10
A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi.
Cell. 2015 Jan 29;160(3):407-19. doi: 10.1016/j.cell.2015.01.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验