Department of Biology, New York University, New York, NY 10003, USA
Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
Development. 2020 Nov 23;147(22):dev194761. doi: 10.1242/dev.194761.
Although Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aimed to address how similar Hox TFs diverge to induce different positional identities. We studied Hox TF DNA-binding and regulatory activity during an motor neuron differentiation system that recapitulates embryonic development. We found diversity in the genomic binding profiles of different Hox TFs, even among the posterior group paralogs that share similar DNA-binding domains. These differences in genomic binding were explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 had a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior Hox TFs to bind to previously inaccessible chromatin drive patterning diversification.This article has an associated 'The people behind the papers' interview.
虽然 Hox 基因编码保守的转录因子(TF),但根据其 DNA 结合域的相似性,它们进一步分为前、中、后三组。后 Hox 组在后口动物支系中扩张,并形成尾部和远端结构。我们旨在探讨相似的 Hox TF 如何分化以诱导不同的位置身份。我们在一个重现胚胎发育的运动神经元分化系统中研究了 Hox TF 的 DNA 结合和调节活性。我们发现不同的 Hox TF 在基因组结合谱上存在多样性,即使在后组 paralogs 中,它们也具有相似的 DNA 结合域。这些基因组结合的差异可以用它们结合以前无法接近的位点的能力来解释。例如,后组 HOXC9 比后组 HOXC10 具有更大的结合封闭位点的能力,产生不同的结合模式,并驱动不同的基因表达程序。从这些结果中,我们提出,后 Hox TF 结合以前无法接近的染色质的能力差异驱动了模式多样化。本文有一个相关的“论文背后的人”采访。