Suppr超能文献

渐进式深小波级联分类模型在癫痫检测中的应用。

A progressive deep wavelet cascade classification model for epilepsy detection.

机构信息

School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China.

出版信息

Artif Intell Med. 2021 Aug;118:102117. doi: 10.1016/j.artmed.2021.102117. Epub 2021 May 28.

Abstract

Automatic epileptic seizure detection according to EEG recordings is helpful for neurologists to identify an epilepsy occurrence in the initial anti-epileptic treatment. To quickly and accurately detect epilepsy, we proposed a progressive deep wavelet cascade classification model (PDWC) based on the discrete wavelet transform (DWT) and Random Forest (RF). Different from current deep networks, the PDWC mimics the progressive object identification process of human beings with recognition cycles. In every cycle, enhanced wavelet energy features at a specific scale were extracted by DWT and input into a set of cascade RF classifiers to realize one recognition. The recognition accuracy of PDWC is gradually improved by the fusion of classification results produced by multiple recognition cycles. Moreover, the cascade structure of PDWC can be automatically determined by the classification accuracy increment between layers. To verify the performance of the PDWC, we respectively applied five traditional schemes and four deep learning schemes to four public datasets. The results show that the PDWC is not only superior than five traditional schemes, including KNN, Bayes, DT, SVM, and RF, but also better than deep learning methods, i.e. convolutional neural network (CNN), Long Short-Term Memory (LSTM), multi-Grained Cascade Forest (gcForest) and wavelet cascade model (WCM). The mean accuracy of PDWC for all subjects of all datasets reaches to 0.9914. With a flexible structure and less parameters, the PDWC is more suitable for the epilepsy detection of diverse EEG signals.

摘要

根据 EEG 记录进行自动癫痫发作检测有助于神经科医生在初始抗癫痫治疗中识别癫痫发作。为了快速准确地检测癫痫,我们提出了一种基于离散小波变换(DWT)和随机森林(RF)的渐进式深波 cascade 分类模型(PDWC)。与当前的深度网络不同,PDWC模仿了人类的渐进式目标识别过程,具有识别周期。在每个周期中,通过 DWT 提取特定尺度的增强小波能量特征,并将其输入到一组级联 RF 分类器中以实现一次识别。PDWC 的识别精度通过多个识别周期产生的分类结果融合逐渐提高。此外,PDWC 的级联结构可以通过层间分类精度增量自动确定。为了验证 PDWC 的性能,我们分别将五种传统方案和四种深度学习方案应用于四个公共数据集。结果表明,PDWC 不仅优于 KNN、Bayes、DT、SVM 和 RF 等五种传统方案,而且优于深度学习方法,即卷积神经网络(CNN)、长短期记忆(LSTM)、多粒度级联森林(gcForest)和小波级联模型(WCM)。PDWC 对所有数据集所有受试者的平均准确率达到 0.9914。PDWC 具有灵活的结构和较少的参数,更适合于多样化 EEG 信号的癫痫检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验