Suppr超能文献

M-VAAL:用于下游医学图像分析任务的多模态变分对抗主动学习

M-VAAL: Multimodal Variational Adversarial Active Learning for Downstream Medical Image Analysis Tasks.

作者信息

Khanal Bidur, Bhattarai Binod, Khanal Bishesh, Stoyanov Danail, Linte Cristian A

机构信息

Center for Imaging Science, RIT, Rochester, NY, USA.

University of Aberdeen, Aberdeen, UK.

出版信息

Med Image Underst Anal. 2024;14122:48-63. doi: 10.1007/978-3-031-48593-0_4. Epub 2023 Dec 2.

Abstract

Acquiring properly annotated data is expensive in the medical field as it requires experts, time-consuming protocols, and rigorous validation. Active learning attempts to minimize the need for large annotated samples by actively sampling the most informative examples for annotation. These examples contribute significantly to improving the performance of supervised machine learning models, and thus, active learning can play an essential role in selecting the most appropriate information in deep learning-based diagnosis, clinical assessments, and treatment planning. Although some existing works have proposed methods for sampling the best examples for annotation in medical image analysis, they are not task-agnostic and do not use multimodal auxiliary information in the sampler, which has the potential to increase robustness. Therefore, in this work, we propose a Multimodal Variational Adversarial Active Learning (M-VAAL) method that uses auxiliary information from additional modalities to enhance the active sampling. We applied our method to two datasets: i) brain tumor segmentation and multi-label classification using the BraTS2018 dataset, and ii) chest X-ray image classification using the COVID-QU-Ex dataset. Our results show a promising direction toward data-efficient learning under limited annotations.

摘要

在医学领域获取经过适当标注的数据成本高昂,因为这需要专家、耗时的流程以及严格的验证。主动学习试图通过主动采样最具信息性的示例进行标注,以尽量减少对大量标注样本的需求。这些示例对提高监督式机器学习模型的性能有显著贡献,因此,主动学习在基于深度学习的诊断、临床评估和治疗规划中选择最合适的信息方面可以发挥重要作用。尽管现有一些工作提出了在医学图像分析中采样最佳标注示例的方法,但它们并非任务无关,且在采样器中未使用多模态辅助信息,而多模态辅助信息有可能提高鲁棒性。因此,在这项工作中,我们提出了一种多模态变分对抗主动学习(M-VAAL)方法,该方法使用来自其他模态的辅助信息来增强主动采样。我们将我们的方法应用于两个数据集:i)使用BraTS2018数据集进行脑肿瘤分割和多标签分类,以及ii)使用COVID-QU-Ex数据集进行胸部X光图像分类。我们的结果显示了在有限标注下朝着数据高效学习的一个有前景的方向。

相似文献

1
M-VAAL: Multimodal Variational Adversarial Active Learning for Downstream Medical Image Analysis Tasks.
Med Image Underst Anal. 2024;14122:48-63. doi: 10.1007/978-3-031-48593-0_4. Epub 2023 Dec 2.
2
Model-data-driven adversarial active learning for brain tumor segmentation.
Comput Biol Med. 2024 Jun;176:108585. doi: 10.1016/j.compbiomed.2024.108585. Epub 2024 May 12.
3
PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation.
Comput Methods Programs Biomed. 2023 Apr;231:107398. doi: 10.1016/j.cmpb.2023.107398. Epub 2023 Feb 7.
4
A medical image classification method based on self-regularized adversarial learning.
Med Phys. 2024 Nov;51(11):8232-8246. doi: 10.1002/mp.17320. Epub 2024 Jul 30.
5
MDAL: Modality-difference-based active learning for multimodal medical image analysis via contrastive learning and pointwise mutual information.
Comput Med Imaging Graph. 2025 Jul;123:102544. doi: 10.1016/j.compmedimag.2025.102544. Epub 2025 Apr 9.
6
Suggestive annotation of brain MR images with gradient-guided sampling.
Med Image Anal. 2022 Apr;77:102373. doi: 10.1016/j.media.2022.102373. Epub 2022 Jan 24.
7
Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation.
Med Phys. 2024 Apr;51(4):2707-2720. doi: 10.1002/mp.16820. Epub 2023 Nov 13.
8
Active learning for left ventricle segmentation in echocardiography.
Comput Methods Programs Biomed. 2024 May;248:108111. doi: 10.1016/j.cmpb.2024.108111. Epub 2024 Mar 7.
9
Active deep learning from a noisy teacher for semi-supervised 3D image segmentation: Application to COVID-19 pneumonia infection in CT.
Comput Med Imaging Graph. 2022 Dec;102:102127. doi: 10.1016/j.compmedimag.2022.102127. Epub 2022 Oct 7.

本文引用的文献

1
Active Learning in Brain Tumor Segmentation with Uncertainty Sampling and Annotation Redundancy Restriction.
J Imaging Inform Med. 2024 Oct;37(5):2099-2107. doi: 10.1007/s10278-024-01037-6. Epub 2024 Mar 21.
2
Meningioma Segmentation in T1-Weighted MRI Leveraging Global Context and Attention Mechanisms.
Front Radiol. 2021 Sep 23;1:711514. doi: 10.3389/fradi.2021.711514. eCollection 2021.
3
GANs for Medical Image Synthesis: An Empirical Study.
J Imaging. 2023 Mar 16;9(3):69. doi: 10.3390/jimaging9030069.
5
Practical utility of liver segmentation methods in clinical surgeries and interventions.
BMC Med Imaging. 2022 May 24;22(1):97. doi: 10.1186/s12880-022-00825-2.
6
A survey on active learning and human-in-the-loop deep learning for medical image analysis.
Med Image Anal. 2021 Jul;71:102062. doi: 10.1016/j.media.2021.102062. Epub 2021 Apr 9.
7
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
8
Tumor-Cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications.
IEEE Trans Med Imaging. 2012 Mar;31(3):790-804. doi: 10.1109/TMI.2011.2181857. Epub 2011 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验