Khanal Bidur, Bhattarai Binod, Khanal Bishesh, Stoyanov Danail, Linte Cristian A
Center for Imaging Science, RIT, Rochester, NY, USA.
University of Aberdeen, Aberdeen, UK.
Med Image Underst Anal. 2024;14122:48-63. doi: 10.1007/978-3-031-48593-0_4. Epub 2023 Dec 2.
Acquiring properly annotated data is expensive in the medical field as it requires experts, time-consuming protocols, and rigorous validation. Active learning attempts to minimize the need for large annotated samples by actively sampling the most informative examples for annotation. These examples contribute significantly to improving the performance of supervised machine learning models, and thus, active learning can play an essential role in selecting the most appropriate information in deep learning-based diagnosis, clinical assessments, and treatment planning. Although some existing works have proposed methods for sampling the best examples for annotation in medical image analysis, they are not task-agnostic and do not use multimodal auxiliary information in the sampler, which has the potential to increase robustness. Therefore, in this work, we propose a Multimodal Variational Adversarial Active Learning (M-VAAL) method that uses auxiliary information from additional modalities to enhance the active sampling. We applied our method to two datasets: i) brain tumor segmentation and multi-label classification using the BraTS2018 dataset, and ii) chest X-ray image classification using the COVID-QU-Ex dataset. Our results show a promising direction toward data-efficient learning under limited annotations.
在医学领域获取经过适当标注的数据成本高昂,因为这需要专家、耗时的流程以及严格的验证。主动学习试图通过主动采样最具信息性的示例进行标注,以尽量减少对大量标注样本的需求。这些示例对提高监督式机器学习模型的性能有显著贡献,因此,主动学习在基于深度学习的诊断、临床评估和治疗规划中选择最合适的信息方面可以发挥重要作用。尽管现有一些工作提出了在医学图像分析中采样最佳标注示例的方法,但它们并非任务无关,且在采样器中未使用多模态辅助信息,而多模态辅助信息有可能提高鲁棒性。因此,在这项工作中,我们提出了一种多模态变分对抗主动学习(M-VAAL)方法,该方法使用来自其他模态的辅助信息来增强主动采样。我们将我们的方法应用于两个数据集:i)使用BraTS2018数据集进行脑肿瘤分割和多标签分类,以及ii)使用COVID-QU-Ex数据集进行胸部X光图像分类。我们的结果显示了在有限标注下朝着数据高效学习的一个有前景的方向。