Tang Xingliang, Zhang Xianrui
School of Information Science and Engineering, LanZhou University, Lanzhou 730000, China.
Sichuan Jiuzhou Electric Group Co Ltd, Mianyang 621000, China.
Entropy (Basel). 2020 Jan 13;22(1):96. doi: 10.3390/e22010096.
Decoding motor imagery (MI) electroencephalogram (EEG) signals for brain-computer interfaces (BCIs) is a challenging task because of the severe non-stationarity of perceptual decision processes. Recently, deep learning techniques have had great success in EEG decoding because of their prominent ability to learn features from raw EEG signals automatically. However, the challenge that the deep learning method faces is that the shortage of labeled EEG signals and EEGs sampled from other subjects cannot be used directly to train a convolutional neural network (ConvNet) for a target subject. To solve this problem, in this paper, we present a novel conditional domain adaptation neural network (CDAN) framework for MI EEG signal decoding. Specifically, in the CDAN, a densely connected ConvNet is firstly applied to obtain high-level discriminative features from raw EEG time series. Then, a novel conditional domain discriminator is introduced to work as an adversarial with the label classifier to learn commonly shared intra-subjects EEG features. As a result, the CDAN model trained with sufficient EEG signals from other subjects can be used to classify the signals from the target subject efficiently. Competitive experimental results on a public EEG dataset (High Gamma Dataset) against the state-of-the-art methods demonstrate the efficacy of the proposed framework in recognizing MI EEG signals, indicating its effectiveness in automatic perceptual decision decoding.
由于感知决策过程存在严重的非平稳性,为脑机接口(BCI)解码运动想象(MI)脑电图(EEG)信号是一项具有挑战性的任务。近年来,深度学习技术在EEG解码方面取得了巨大成功,因为它们具有从原始EEG信号中自动学习特征的卓越能力。然而,深度学习方法面临的挑战在于,标记EEG信号的短缺以及从其他受试者采集的EEG信号不能直接用于为目标受试者训练卷积神经网络(ConvNet)。为了解决这个问题,在本文中,我们提出了一种用于MI EEG信号解码的新型条件域自适应神经网络(CDAN)框架。具体而言,在CDAN中,首先应用密集连接的ConvNet从原始EEG时间序列中获取高级判别特征。然后,引入一种新型条件域判别器,与标签分类器作为对抗对手,以学习受试者内部共同共享的EEG特征。结果,使用来自其他受试者的足够EEG信号训练的CDAN模型可用于有效地对来自目标受试者的信号进行分类。在一个公共EEG数据集(高伽马数据集)上针对现有最先进方法的竞争性实验结果证明了所提出框架在识别MI EEG信号方面的有效性,表明其在自动感知决策解码中的有效性。