Suppr超能文献

动态关节域自适应网络用于运动想象分类。

Dynamic Joint Domain Adaptation Network for Motor Imagery Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:556-565. doi: 10.1109/TNSRE.2021.3059166. Epub 2021 Mar 3.

Abstract

Electroencephalogram (EEG) has been widely used in brain computer interface (BCI) due to its convenience and reliability. The EEG-based BCI applications are majorly limited by the time-consuming calibration procedure for discriminative feature representation and classification. Existing EEG classification methods either heavily depend on the handcrafted features or require adequate annotated samples at each session for calibration. To address these issues, we propose a novel dynamic joint domain adaptation network based on adversarial learning strategy to learn domain-invariant feature representation, and thus improve EEG classification performance in the target domain by leveraging useful information from the source session. Specifically, we explore the global discriminator to align the marginal distribution across domains, and the local discriminator to reduce the conditional distribution discrepancy between sub-domains via conditioning on deep representation as well as the predicted labels from the classifier. In addition, we further investigate a dynamic adversarial factor to adaptively estimate the relative importance of alignment between the marginal and conditional distributions. To evaluate the efficacy of our method, extensive experiments are conducted on two public EEG datasets, namely, Datasets IIa and IIb of BCI Competition IV. The experimental results demonstrate that the proposed method achieves superior performance compared with the state-of-the-art methods.

摘要

脑电图(EEG)由于其便利性和可靠性,已在脑机接口(BCI)中得到了广泛应用。基于 EEG 的 BCI 应用主要受到用于判别特征表示和分类的耗时校准过程的限制。现有的 EEG 分类方法要么严重依赖于手工制作的特征,要么需要在每个会话中都有足够的标记样本进行校准。为了解决这些问题,我们提出了一种新的基于对抗学习策略的动态联合域自适应网络,以学习域不变的特征表示,从而通过利用来自源会话的有用信息来提高目标域中的 EEG 分类性能。具体来说,我们探索了全局鉴别器来对齐跨域的边缘分布,以及局部鉴别器通过在深表示上以及来自分类器的预测标签上进行条件化来减少子域之间的条件分布差异。此外,我们进一步研究了一种动态对抗因素,以自适应地估计边缘和条件分布之间对齐的相对重要性。为了评估我们方法的效果,我们在两个公共 EEG 数据集上进行了广泛的实验,即 BCI 竞赛 IV 的数据集 IIa 和 IIb。实验结果表明,与最先进的方法相比,所提出的方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验