Szikora Szilárd, Görög Péter, Kozma Csaba, Mihály József
Institute of Genetics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary.
Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary.
Cells. 2021 Jul 29;10(8):1924. doi: 10.3390/cells10081924.
With the advent of super-resolution microscopy, we gained a powerful toolbox to bridge the gap between the cellular- and molecular-level analysis of living organisms. Although nanoscopy is broadly applicable, classical model organisms, such as fruit flies, worms and mice, remained the leading subjects because combining the strength of sophisticated genetics, biochemistry and electrophysiology with the unparalleled resolution provided by super-resolution imaging appears as one of the most efficient approaches to understanding the basic cell biological questions and the molecular complexity of life. Here, we summarize the major nanoscopic techniques and illustrate how these approaches were used in model systems to revisit a series of well-known cell biological phenomena. These investigations clearly demonstrate that instead of simply achieving an improvement in image quality, nanoscopy goes far beyond with its immense potential to discover novel structural and mechanistic aspects. With the examples of synaptic active zones, centrosomes and sarcomeres, we will explain the instrumental role of super-resolution imaging pioneered in in understanding fundamental subcellular constituents.
随着超分辨率显微镜的出现,我们获得了一个强大的工具箱,以弥合对活生物体进行细胞水平和分子水平分析之间的差距。尽管纳米显微镜具有广泛的适用性,但经典模式生物,如果蝇、蠕虫和小鼠,仍然是主要研究对象,因为将复杂遗传学、生物化学和电生理学的优势与超分辨率成像提供的无与伦比的分辨率相结合,似乎是理解基本细胞生物学问题和生命分子复杂性的最有效方法之一。在这里,我们总结了主要的纳米显微镜技术,并说明这些方法是如何在模型系统中用于重新审视一系列著名的细胞生物学现象的。这些研究清楚地表明,纳米显微镜不仅仅是简单地提高图像质量,它还有巨大的潜力去发现新的结构和机制方面,远远超出了这一范畴。以突触活性区、中心体和肌节为例,我们将解释超分辨率成像在理解基本亚细胞成分方面所起的重要作用。