Suppr超能文献

深度学习生存模型在提高胶质母细胞瘤患者生存预测中的作用。

The role of deep learning-based survival model in improving survival prediction of patients with glioblastoma.

机构信息

Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.

Electrical Engineering, Shahid Beheshti University, Tehran, Iran.

出版信息

Cancer Med. 2021 Oct;10(20):7048-7059. doi: 10.1002/cam4.4230. Epub 2021 Aug 28.

Abstract

This retrospective study has been conducted to validate the performance of deep learning-based survival models in glioblastoma (GBM) patients alongside the Cox proportional hazards model (CoxPH) and the random survival forest (RSF). Furthermore, the effect of hyperparameters optimization methods on improving the prediction accuracy of deep learning-based survival models was investigated. Of the 305 cases, 260 GBM patients were included in our analysis based on the following criteria: demographic information (i.e., age, Karnofsky performance score, gender, and race), tumor characteristic (i.e., laterality and location), details of post-surgical treatment (i.e., time to initiate concurrent chemoradiation therapy, standard treatment, and radiotherapy techniques), and last follow-up time as well as the molecular markers (i.e., O-6-methylguanine methyltransferase and isocitrate dehydrogenase 1 status). Experimental results have demonstrated that age (Elderly > 65: hazard ratio [HR] = 1.63; 95% confidence interval [CI]: 1.213-2.18; p value = 0.001) and tumors located at multiple lobes ([HR] = 1.75; 95% [CI]: 1.177-2.61; p value = 0.006) were associated with poorer prognosis. In contrast, age (young < 40: [HR] = 0.57; 95% [CI]: 0.343-0.96; p value = 0.034) and type of radiotherapy (others include stereotactic and brachytherapy: [HR] = 0.5; 95%[CI]: 0.266-0.95; p value = 0.035) were significantly related to better prognosis. Furthermore, the proposed deep learning-based survival model (concordance index [c-index] = 0.823 configured by Bayesian hyperparameter optimization), outperformed the RSF (c-index = 0.728), and the CoxPH model (c-index = 0.713) in the training dataset. Our results show the ability of deep learning in learning a complex association of risk factors. Moreover, the remarkable performance of the deep-learning-based survival model could be promising to support decision-making systems in personalized medicine for patients with GBM.

摘要

本回顾性研究旨在验证基于深度学习的生存模型在胶质母细胞瘤(GBM)患者中的表现,同时与 Cox 比例风险模型(CoxPH)和随机生存森林(RSF)进行比较。此外,还研究了超参数优化方法对提高基于深度学习的生存模型预测准确性的影响。在 305 例患者中,根据以下标准纳入 260 例 GBM 患者进行分析:人口统计学信息(即年龄、卡诺夫斯基表现评分、性别和种族)、肿瘤特征(即侧别和位置)、术后治疗细节(即开始同步放化疗的时间、标准治疗和放疗技术)以及最后随访时间以及分子标志物(即 O-6-甲基鸟嘌呤甲基转移酶和异柠檬酸脱氢酶 1 状态)。实验结果表明,年龄(老年人>65 岁:风险比[HR]=1.63;95%置信区间[CI]:1.213-2.18;p 值=0.001)和位于多个叶的肿瘤([HR]=1.75;95%CI:1.177-2.61;p 值=0.006)与预后较差相关。相比之下,年龄(年轻<40 岁:[HR]=0.57;95%CI:0.343-0.96;p 值=0.034)和放疗类型(其他包括立体定向和近距离放疗:[HR]=0.5;95%CI:0.266-0.95;p 值=0.035)与更好的预后显著相关。此外,所提出的基于深度学习的生存模型(通过贝叶斯超参数优化配置的一致性指数[c-index]=0.823)在训练数据集中优于 RSF(c-index=0.728)和 CoxPH 模型(c-index=0.713)。我们的结果表明,深度学习在学习风险因素的复杂关联方面具有能力。此外,基于深度学习的生存模型的出色表现有望为 GBM 患者的个性化医疗决策支持系统提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cbe/8525162/ed3ae4b09143/CAM4-10-7048-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验