Suppr超能文献

垂直网格逻辑回归置信区间(VERTIGO-CI)。

VERTIcal Grid lOgistic regression with Confidence Intervals (VERTIGO-CI).

机构信息

University of California San Diego Health System Department of Biomedical Informatics, La Jolla, CA 92130, USA.

These authors contributed equally. Corresponding Author: Lucila Ohno-Machado, MD, MBA, PhD (

出版信息

AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:355-364. eCollection 2021.

Abstract

Federated learning of data from multiple participating parties is getting more attention and has many healthcare applications. We have previously developed VERTIGO, a distributed logistic regression model for vertically partitioned data. The model takes advantage of the linear separation property of kernel matrices of a dual space model to harmonize information in a privacy-preserving manner. However, this method does not handle the variance estimation and only provides point estimates: it cannot report test statistics and associated P-values. In this work, we extend VERTIGO by introducing a novel ring-structure protocol to pass on intermediary statistics among clients and successfully reconstructed the covariance matrix in the dual space. This extension, VERTIGO-CI, is a complete protocol to construct a logistic regression model from vertically partitioned datasets as if it is trained on combined data in a centralized setting. We evaluated our results on synthetic and real data, showing the equivalent accuracy and tolerable performance overhead compared to the centralized version. This novel extension can be applied to other types of generalized linear models that have dual objectives.

摘要

多方参与的联邦学习越来越受到关注,并在医疗保健领域有许多应用。我们之前开发了 VERTIGO,这是一种用于垂直分割数据的分布式逻辑回归模型。该模型利用对偶空间模型核矩阵的线性分离特性,以隐私保护的方式协调信息。然而,这种方法不处理方差估计,只提供点估计:它不能报告检验统计量和相关的 P 值。在这项工作中,我们通过引入一种新的环形结构协议来扩展 VERTIGO,该协议可以在客户端之间传递中间统计信息,并成功重建对偶空间中的协方差矩阵。这个扩展名为 VERTIGO-CI,它是一个完整的协议,可以从垂直分割的数据集中构建逻辑回归模型,就好像它是在集中设置下基于组合数据进行训练的。我们在合成数据和真实数据上评估了我们的结果,与集中版本相比,它具有相当的准确性和可接受的性能开销。这个新的扩展可以应用于具有对偶目标的其他类型的广义线性模型。

相似文献

1
VERTIcal Grid lOgistic regression with Confidence Intervals (VERTIGO-CI).
AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:355-364. eCollection 2021.
2
VERTIcal Grid lOgistic regression (VERTIGO).
J Am Med Inform Assoc. 2016 May;23(3):570-9. doi: 10.1093/jamia/ocv146. Epub 2015 Nov 9.
4
Privacy-preserving construction of generalized linear mixed model for biomedical computation.
Bioinformatics. 2020 Jul 1;36(Suppl_1):i128-i135. doi: 10.1093/bioinformatics/btaa478.
5
Privacy-preserving logistic regression with secret sharing.
BMC Med Inform Decis Mak. 2022 Apr 2;22(1):89. doi: 10.1186/s12911-022-01811-y.
7
Privacy-preserving dataset combination and Lasso regression for healthcare predictions.
BMC Med Inform Decis Mak. 2021 Sep 16;21(1):266. doi: 10.1186/s12911-021-01582-y.
9
Preserving Institutional Privacy in Distributed binary Logistic Regression.
AMIA Annu Symp Proc. 2012;2012:1450-8. Epub 2012 Nov 3.
10
A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
Artif Intell Med. 2020 Mar;103:101814. doi: 10.1016/j.artmed.2020.101814. Epub 2020 Feb 5.

引用本文的文献

2
Recent methodological advances in federated learning for healthcare.
Patterns (N Y). 2024 Jun 14;5(6):101006. doi: 10.1016/j.patter.2024.101006.
3
COLLAGENE enables privacy-aware federated and collaborative genomic data analysis.
Genome Biol. 2023 Sep 11;24(1):204. doi: 10.1186/s13059-023-03039-z.

本文引用的文献

1
Public reactions to direct-to-consumer genetic health tests: A comparison across the US, UK, Japan and Australia.
Eur J Hum Genet. 2020 Mar;28(3):339-348. doi: 10.1038/s41431-019-0529-8. Epub 2019 Oct 23.
2
The association of mannose binding lectin genotype and immune response to Chlamydia pneumoniae: The Strong Heart Study.
PLoS One. 2019 Jan 10;14(1):e0210640. doi: 10.1371/journal.pone.0210640. eCollection 2019.
3
PCORnet's Collaborative Research Groups.
Patient Relat Outcome Meas. 2018 Feb 9;9:91-95. doi: 10.2147/PROM.S141630. eCollection 2018.
5
VERTIcal Grid lOgistic regression (VERTIGO).
J Am Med Inform Assoc. 2016 May;23(3):570-9. doi: 10.1093/jamia/ocv146. Epub 2015 Nov 9.
6
A global reference for human genetic variation.
Nature. 2015 Oct 1;526(7571):68-74. doi: 10.1038/nature15393.
7
WebDISCO: a web service for distributed cox model learning without patient-level data sharing.
J Am Med Inform Assoc. 2015 Nov;22(6):1212-9. doi: 10.1093/jamia/ocv083. Epub 2015 Jul 9.
8
The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge.
Contemp Oncol (Pozn). 2015;19(1A):A68-77. doi: 10.5114/wo.2014.47136.
9
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64. doi: 10.1136/amiajnl-2012-000862. Epub 2012 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验