Wu Zhuhao, Cai Hongwei, Ao Zheng, Xu Junhua, Heaps Samuel, Guo Feng
Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, United States.
Adv Mater Technol. 2021 Aug;6(8). doi: 10.1002/admt.202000683. Epub 2021 Jun 10.
Bioprinting of vascular tissues holds great potential in tissue engineering and regenerative medicine. However, challenges remain in fabricating biocompatible and versatile scaffolds for the rapid engineering of vascular tissues and vascularized organs. Here, we report novel bioink-enabled microfluidic printing of tunable hollow microfibers for the rapid formation of blood vessels. By compositing biomaterials including sodium alginate, gelatin methacrylate (GelMA), and glycidyl-methacrylate silk fibroin (SilkMA), we prepared a novel composite bioink with excellent printability and biocompatibility. This composite bioink can be printed into hollow microfibers with tunable dimensions using a microfluidic co-axial printing. After seeding human umbilical vein endothelial cells (HUVEC) into the hollow chambers via a microfluidic prefusion device, these cells can adhere to, grow, proliferate, and then cover the internal surface of the printed hollow scaffolds to form vessel-like tissue structures within three days. By combining the unique composite bioink, microfluidic printing of vascular scaffolds, and microfluidic cell seeding and culturing, our strategy can fabricate vascular-like tissue structures with high viability and tunable dimension within three days. The presented method may engineer in vitro vasculatures for the broad applications in basic research and translational medicine including in vitro disease models, tissue microcirculation, and tissue transplantation.
血管组织的生物打印在组织工程和再生医学中具有巨大潜力。然而,在制造用于快速构建血管组织和血管化器官的生物相容性和多功能支架方面,仍然存在挑战。在此,我们报告了一种新型的基于生物墨水的微流控打印方法,可用于制造可调谐的中空微纤维,以快速形成血管。通过将包括海藻酸钠、甲基丙烯酸明胶(GelMA)和甲基丙烯酸缩水甘油酯丝素蛋白(SilkMA)在内的生物材料进行复合,我们制备了一种具有优异可打印性和生物相容性的新型复合生物墨水。这种复合生物墨水可以使用微流控同轴打印技术打印成尺寸可调的中空微纤维。通过微流控预灌注装置将人脐静脉内皮细胞(HUVEC)接种到中空腔室后,这些细胞能够附着、生长、增殖,并在三天内覆盖打印的中空支架的内表面,形成血管样组织结构。通过结合独特的复合生物墨水、血管支架的微流控打印以及微流控细胞接种和培养,我们的策略能够在三天内制造出具有高活力和可调尺寸的血管样组织结构。所提出的方法可能为基础研究和转化医学中的广泛应用构建体外血管系统,包括体外疾病模型、组织微循环和组织移植。