Suppr超能文献

用于血管组织工程的可调谐中空微纤维的微流控打印

Microfluidic Printing of Tunable Hollow Microfibers for Vascular Tissue Engineering.

作者信息

Wu Zhuhao, Cai Hongwei, Ao Zheng, Xu Junhua, Heaps Samuel, Guo Feng

机构信息

Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, United States.

出版信息

Adv Mater Technol. 2021 Aug;6(8). doi: 10.1002/admt.202000683. Epub 2021 Jun 10.

Abstract

Bioprinting of vascular tissues holds great potential in tissue engineering and regenerative medicine. However, challenges remain in fabricating biocompatible and versatile scaffolds for the rapid engineering of vascular tissues and vascularized organs. Here, we report novel bioink-enabled microfluidic printing of tunable hollow microfibers for the rapid formation of blood vessels. By compositing biomaterials including sodium alginate, gelatin methacrylate (GelMA), and glycidyl-methacrylate silk fibroin (SilkMA), we prepared a novel composite bioink with excellent printability and biocompatibility. This composite bioink can be printed into hollow microfibers with tunable dimensions using a microfluidic co-axial printing. After seeding human umbilical vein endothelial cells (HUVEC) into the hollow chambers via a microfluidic prefusion device, these cells can adhere to, grow, proliferate, and then cover the internal surface of the printed hollow scaffolds to form vessel-like tissue structures within three days. By combining the unique composite bioink, microfluidic printing of vascular scaffolds, and microfluidic cell seeding and culturing, our strategy can fabricate vascular-like tissue structures with high viability and tunable dimension within three days. The presented method may engineer in vitro vasculatures for the broad applications in basic research and translational medicine including in vitro disease models, tissue microcirculation, and tissue transplantation.

摘要

血管组织的生物打印在组织工程和再生医学中具有巨大潜力。然而,在制造用于快速构建血管组织和血管化器官的生物相容性和多功能支架方面,仍然存在挑战。在此,我们报告了一种新型的基于生物墨水的微流控打印方法,可用于制造可调谐的中空微纤维,以快速形成血管。通过将包括海藻酸钠、甲基丙烯酸明胶(GelMA)和甲基丙烯酸缩水甘油酯丝素蛋白(SilkMA)在内的生物材料进行复合,我们制备了一种具有优异可打印性和生物相容性的新型复合生物墨水。这种复合生物墨水可以使用微流控同轴打印技术打印成尺寸可调的中空微纤维。通过微流控预灌注装置将人脐静脉内皮细胞(HUVEC)接种到中空腔室后,这些细胞能够附着、生长、增殖,并在三天内覆盖打印的中空支架的内表面,形成血管样组织结构。通过结合独特的复合生物墨水、血管支架的微流控打印以及微流控细胞接种和培养,我们的策略能够在三天内制造出具有高活力和可调尺寸的血管样组织结构。所提出的方法可能为基础研究和转化医学中的广泛应用构建体外血管系统,包括体外疾病模型、组织微循环和组织移植。

相似文献

6
Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.微流控法制备仿腔微纤维用于 3D 支架
ACS Appl Mater Interfaces. 2018 Sep 5;10(35):29219-29226. doi: 10.1021/acsami.8b09212. Epub 2018 Aug 21.

引用本文的文献

2
Human brain organoids for understanding substance use disorders.用于理解物质使用障碍的人类脑类器官。
Drug Metab Pharmacokinet. 2025 Feb;60:101036. doi: 10.1016/j.dmpk.2024.101036. Epub 2024 Nov 7.
6
Alginate microfibers as therapeutic delivery scaffolds and tissue mimics.藻酸盐微纤维作为治疗性递药支架和组织模拟物。
Exp Biol Med (Maywood). 2022 Dec;247(23):2103-2118. doi: 10.1177/15353702221112905. Epub 2022 Aug 23.

本文引用的文献

1
Multiscale brain research on a microfluidic chip.微流控芯片上的多尺度大脑研究。
Lab Chip. 2020 May 7;20(9):1531-1543. doi: 10.1039/c9lc01010f. Epub 2020 Mar 9.
2
Advanced Bottom-Up Engineering of Living Architectures.高级的自下而上的活体系结构工程。
Adv Mater. 2020 Feb;32(6):e1903975. doi: 10.1002/adma.201903975. Epub 2019 Dec 11.
3
6
Flow-enhanced vascularization and maturation of kidney organoids in vitro.体外增强肾类器官的血管生成和成熟。
Nat Methods. 2019 Mar;16(3):255-262. doi: 10.1038/s41592-019-0325-y. Epub 2019 Feb 11.
10
A short discourse on vascular tissue engineering.关于血管组织工程的简短论述。
NPJ Regen Med. 2017;2. doi: 10.1038/s41536-017-0011-6. Epub 2017 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验