Suppr超能文献

压延对锂离子电池中LiNiMnAlO正极电化学性能的影响

Influence of Calendering on the Electrochemical Performance of LiNiMnAlO Cathodes in Lithium-Ion Cells.

作者信息

Sim Richard, Lee Steven, Li Wangda, Manthiram Arumugam

机构信息

Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Sep 15;13(36):42898-42908. doi: 10.1021/acsami.1c12543. Epub 2021 Aug 30.

Abstract

Electrode calendering is a necessary process used in industry to improve the volumetric capacity of lithium-ion batteries. However, calendering high-nickel cathodes leads to electrode particle pulverization, raising concerns of a reduced cycle life due to parasitic side reactions. We present here an investigation of the impact of calendering on the morphology and electrochemical performance of the cobalt-free layered oxide cathode LiNiMnAlO (NMA-90). We find that secondary particle pulverization and fusion simultaneously occur at sufficiently high pressures. The initial surface area of the cathode is shown to increase with the degree of calendering, despite the higher likelihood of secondary particle fusion. Long-term cycling of full coin cells assembled with the NMA-90 cathode and the graphite anode indicates that cells with higher degrees of cathode calendering exhibit lower capacity fade compared to uncalendered cathodes. Hybrid pulse-power tests demonstrate that the usable capacity range of cells with calendered cathodes far exceeds those with uncalendered cells after long-term cycling. The improved capacity retention and pulse-power performance are attributed to the enhanced mechanical properties of the electrode after calendering that prevents loss of the primary particle contact during long-term cycling. We find that calendering high-nickel NMA-90 to industrially relevant densities does not have a detrimental effect on capacity fade, marking an important step toward commercial adoption.

摘要

电极压延是工业上用于提高锂离子电池体积容量的必要工艺。然而,对高镍阴极进行压延会导致电极颗粒粉碎,引发人们对因寄生副反应而缩短循环寿命的担忧。我们在此展示了对压延对无钴层状氧化物阴极LiNiMnAlO(NMA - 90)的形态和电化学性能影响的研究。我们发现,在足够高的压力下,二次颗粒粉碎和融合会同时发生。尽管二次颗粒融合的可能性更高,但阴极的初始表面积显示会随着压延程度的增加而增大。用NMA - 90阴极和石墨阳极组装的全硬币电池的长期循环表明,与未压延的阴极相比,阴极压延程度较高的电池表现出更低的容量衰减。混合脉冲功率测试表明,经过长期循环后,压延阴极电池的可用容量范围远远超过未压延电池。容量保持率和脉冲功率性能的提高归因于压延后电极机械性能的增强,这防止了在长期循环过程中一次颗粒接触的丧失。我们发现,将高镍NMA - 90压延到与工业相关的密度对容量衰减没有不利影响,这标志着向商业应用迈出了重要一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验