Suppr超能文献

用于神经形态计算应用的模拟纳米级光电突触

Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications.

机构信息

Integrated Systems Laboratory, ETH Zurich, 8092 Zurich, Switzerland.

Institute of Electromagnetic Fields (IEF), ETH Zurich, 8092 Zurich, Switzerland.

出版信息

ACS Nano. 2021 Sep 28;15(9):14776-14785. doi: 10.1021/acsnano.1c04654. Epub 2021 Aug 30.

Abstract

The typically nonlinear and asymmetric response of synaptic memristors to positive and negative electrical pulses makes the realization of accurate deep neural networks very challenging. Here, we integrate a two-terminal valence change memory (VCM) into a photonic/plasmonic circuit and show that the switching properties of this memristor become more gradual and symmetric under light irradiation. The added optical input acts on the VCM as a third, independent modulation channel. It locally heats the active area of the device, which enhances the generation of oxygen vacancies and broadens the resulting nanoscale conductive filaments. The measured conductance modulation of the VCM is then inserted into a neural network simulator. Using the MNIST data set of handwritten digits as an application, a light-enhanced recognition accuracy of 93.53% is demonstrated, similar to ideally performing memristors (94.86%) and much higher than those without light (67.37%). Notably, the optical signal does not increase the overall energy consumption by more than 3.2%. Finally, an approach to scale up our electro-optical technology is proposed, which could allow high-density, energy-efficient neuromorphic computing chips.

摘要

突触忆阻器对正、负电脉冲的典型非线性和不对称响应使得准确实现深度神经网络极具挑战性。在这里,我们将一个两端式的价态变化存储器(VCM)集成到一个光子/等离子体电路中,并表明该忆阻器的开关特性在光辐照下变得更加渐进和对称。所添加的光输入作为第三个独立的调制通道作用于 VCM。它局部加热器件的有源区,从而增强了氧空位的产生并拓宽了由此产生的纳米级导电丝。然后,将 VCM 的测量电导调制插入神经网络模拟器中。使用手写数字的 MNIST 数据集作为应用,演示了增强光识别精度为 93.53%,与理想的忆阻器(94.86%)相似,远高于没有光的情况(67.37%)。值得注意的是,光信号不会使总能耗增加超过 3.2%。最后,提出了一种扩展我们的光电技术的方法,这可能允许高密度、高能效的神经形态计算芯片。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验