Shi Zixiong, Sun Zhongti, Cai Jingsheng, Yang Xianzhong, Wei Chaohui, Wang Menglei, Ding Yifan, Sun Jingyu
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China.
College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
Adv Mater. 2021 Oct;33(43):e2103050. doi: 10.1002/adma.202103050. Epub 2021 Aug 31.
Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual-defect engineering (i.e., introducing both N-doping and Se-vacancies) of a common MoSe electrocatalyst is used to manipulate the bidirectional Li S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li-S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm ) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual-defect engineering is an appealing approach toward working Li-S systems.
锂硫(Li-S)电池是下一代储能的理想候选者,但它们受到臭名昭著的多硫化物穿梭效应和缓慢的氧化还原动力学的困扰。虽然合理设计的氧化还原介质可以促进多硫化物的转化,但良好的双向硫电催化仍然是一个巨大的挑战。在此,通过对常见的MoSe电催化剂进行选择性双缺陷工程(即同时引入N掺杂和Se空位)来调控双向锂硫氧化还原。系统的理论预测和详细的动电分析揭示了这两种类型缺陷的选择性电催化作用,从而对双向硫电化学有了更深入的机理理解。使用这种电催化剂的锂硫电池表现出优异的循环稳定性,在2.0 C下1000次循环中每循环的容量衰减率低至0.04%。更令人印象深刻的是,高面积容量(7.3 mAh cm )和柔性软包电池的构建突出了其实际应用潜力。这种由双缺陷工程产生的选择性电催化是实现实用锂硫体系的一种有吸引力的方法。