Jiao Long, Jiang Hao, Lei Yechen, Wu Shuilin, Gao Qili, Bu Shuyu, Kong Xin, Yang Shuo, Shu Dengkun, Li Chenyang, Li Heng, Cheng Bowen, Lee Chun-Sing, Zhang Wenjun
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
Department of Materials Science and Engineering and Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
ACS Nano. 2022 Sep 27;16(9):14262-14273. doi: 10.1021/acsnano.2c04402. Epub 2022 Aug 24.
Li-S batteries present great potential to realize high-energy-density storage, but their practical implementation is severely hampered by the notorious polysulfide shuttling and the sluggish redox kinetics. While rationally designed redox mediators can optimize polysulfide conversion, the efficiency and stability of such a mediation process still remain formidable challenges. Herein, a strategy of constructing a "dual mediator system" is proposed for achieving efficient and durable modulation of polysulfide conversion kinetics by coupling well-selected solid and electrolyte-soluble mediators. Theoretical prediction and detailed electrochemical analysis reveal the structure-activity relationships of the two mediators in synergistically optimizing the redox conversions of sulfur species, thus achieving a deeper mechanistic understanding of a function-supporting mediator system design toward sulfur electrochemistry promotion. Specifically, such a dual mediator system realizes the bridging of full-range "electrochemical catalysis" and strengthened "chemical reduction" processes of sulfur species as well as greatly suppressed mediator deactivation/loss due to the beneficial interactions between each mediator component. Attributed to these advantageous features, the Li-S batteries enable a slow capacity decay of 0.026% per cycle over 1200 cycles and a desirable capacity of 8.8 mAh cm with 8.2 mg cm sulfur loading and lean electrolyte condition. This work not only proposes an effective mediator system design strategy for promoting Li-S battery performance but also inspires its potential utilization facing other analogous sophisticated electrochemical conversion processes.
锂硫电池在实现高能量密度存储方面具有巨大潜力,但其实际应用受到臭名昭著的多硫化物穿梭效应和缓慢的氧化还原动力学的严重阻碍。虽然合理设计的氧化还原介质可以优化多硫化物转化,但这种介导过程的效率和稳定性仍然是巨大的挑战。在此,提出了一种构建“双介质系统”的策略,通过耦合精心选择的固体和电解质可溶介质来实现对多硫化物转化动力学的高效持久调制。理论预测和详细的电化学分析揭示了两种介质在协同优化硫物种氧化还原转化方面的结构-活性关系,从而对促进硫电化学的功能支持介质系统设计有了更深入的机理理解。具体而言,这种双介质系统实现了硫物种全范围“电化学催化”和强化“化学还原”过程的衔接,以及由于各介质组分之间的有益相互作用而大大抑制了介质失活/损失。由于这些有利特性,锂硫电池在1200次循环中实现了每循环0.026%的缓慢容量衰减,在硫负载量为8.2 mg cm且电解质贫化的条件下具有8.8 mAh cm的理想容量。这项工作不仅提出了一种促进锂硫电池性能的有效介质系统设计策略,也激发了其在面对其他类似复杂电化学转化过程中的潜在应用。