Suppr超能文献

自然和过早衰老心肌中的基因组不稳定性。

Genomic instability in the naturally and prematurely aged myocardium.

机构信息

Department of Molecular Genetics, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands.

Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2022974118.

Abstract

Genomic instability, the unresolved accumulation of DNA variants, is hypothesized as one of the contributors to the natural aging process. We assessed the frequency of unresolved DNA damage reaching the transcriptome of the murine myocardium during the course of natural aging and in hearts from four distinct mouse models of premature aging with established aging-related cardiac dysfunctions. RNA sequencing and variant calling based on total RNA sequencing was compared between hearts from naturally aging mice, mice with cardiomyocyte-specific deficiency of , a component of the DNA repair machinery, mice with reduced mitochondrial antioxidant capacity, -deficient mice with reduced telomere length, and a mouse model of human Hutchinson-Gilford progeria syndrome (HGPS). Our results demonstrate that no enrichment in variants is evident in the naturally aging murine hearts until 2 y of age from the HGPS mouse model or mice with reduced telomere lengths. In contrast, a dramatic accumulation of variants was evident in cardiomyocyte-specific knockout mice with deficient DNA repair machinery, in mice with reduced mitochondrial antioxidant capacity, and in the intestine, liver, and lung of naturally aging mice. Our data demonstrate that genomic instability does not evidently contribute to naturally aging of the mouse heart in contrast to other organs and support the contention that the endogenous DNA repair machinery is remarkably active to maintain genomic integrity in cardiac cells throughout life.

摘要

基因组不稳定性,即 DNA 变异的未解决积累,被假设为自然衰老过程的一个贡献因素。我们评估了在自然衰老过程中和在具有已建立的与衰老相关的心脏功能障碍的四种不同的过早衰老小鼠模型的心脏中,未解决的 DNA 损伤到达小鼠心肌转录组的频率。基于总 RNA 测序的 RNA 测序和变体调用在来自自然衰老小鼠、心肌细胞特异性缺乏的小鼠、线粒体抗氧化能力降低的小鼠、端粒长度降低的 - 缺陷小鼠和人类哈钦森-吉尔福德早衰综合征 (HGPS) 小鼠模型的心脏之间进行了比较。我们的结果表明,直到从 HGPS 小鼠模型或端粒长度降低的小鼠中自然衰老 2 年时,自然衰老的鼠心中才明显存在变体富集。相比之下,在 DNA 修复机制缺陷的心肌细胞特异性敲除小鼠、线粒体抗氧化能力降低的小鼠以及自然衰老小鼠的肠道、肝脏和肺部中,明显积累了大量变体。我们的数据表明,与其他器官相比,基因组不稳定性并没有明显导致小鼠心脏的自然衰老,这支持了内源性 DNA 修复机制在整个生命周期中非常活跃地维持心脏细胞基因组完整性的观点。

相似文献

1
Genomic instability in the naturally and prematurely aged myocardium.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2022974118.
2
3
Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging.
Redox Biol. 2018 Jul;17:259-273. doi: 10.1016/j.redox.2018.04.007. Epub 2018 Apr 13.
5
Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes.
Oncotarget. 2016 May 24;7(21):30018-31. doi: 10.18632/oncotarget.9065.
6
Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice.
Aging Cell. 2020 Mar;19(3):e13094. doi: 10.1111/acel.13094. Epub 2020 Jan 25.
7
Genomic instability in laminopathy-based premature aging.
Nat Med. 2005 Jul;11(7):780-5. doi: 10.1038/nm1266. Epub 2005 Jun 26.
8
Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations.
Ageing Res Rev. 2017 Jan;33:18-29. doi: 10.1016/j.arr.2016.06.007. Epub 2016 Jun 29.
9
A mouse model of accelerated liver aging caused by a defect in DNA repair.
Hepatology. 2012 Feb;55(2):609-21. doi: 10.1002/hep.24713.

引用本文的文献

1
The advances in acetylation modification in senescence and aging-related diseases.
Front Physiol. 2025 May 12;16:1553646. doi: 10.3389/fphys.2025.1553646. eCollection 2025.
2
Telomere Length Is Associated With Adverse Atrial Remodeling in Patients With Atrial Fibrillation.
J Am Heart Assoc. 2025 Feb 4;14(3):e037512. doi: 10.1161/JAHA.124.037512. Epub 2025 Feb 3.
3
Anti-ageing interventions for the treatment of cardiovascular disease.
Cardiovasc Res. 2024 Aug 22. doi: 10.1093/cvr/cvae177.
5
Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis.
J Mol Biol. 2024 Jul 1;436(13):168618. doi: 10.1016/j.jmb.2024.168618. Epub 2024 May 18.
6
Histone deficiency and hypoacetylation in the aging retinal pigment epithelium.
Aging Cell. 2024 May;23(5):e14108. doi: 10.1111/acel.14108. Epub 2024 Feb 26.
7
Unraveling Histone Loss in Aging and Senescence.
Cells. 2024 Feb 9;13(4):320. doi: 10.3390/cells13040320.
8
Impaired end joining induces cardiac atrophy in a Hutchinson-Gilford progeria mouse model.
Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2309200120. doi: 10.1073/pnas.2309200120. Epub 2023 Nov 15.
9
Identification and functional analysis of senescent cells in the cardiovascular system using omics approaches.
Am J Physiol Heart Circ Physiol. 2023 Nov 1;325(5):H1039-H1058. doi: 10.1152/ajpheart.00352.2023. Epub 2023 Sep 1.
10
Coronary and carotid artery dysfunction and K7 overexpression in a mouse model of Hutchinson-Gilford progeria syndrome.
Geroscience. 2024 Feb;46(1):867-884. doi: 10.1007/s11357-023-00808-3. Epub 2023 May 26.

本文引用的文献

1
Identification of common cardiometabolic alterations and deregulated pathways in mouse and pig models of aging.
Aging Cell. 2020 Sep;19(9):e13203. doi: 10.1111/acel.13203. Epub 2020 Jul 30.
2
Telomere Length as Cardiovascular Aging Biomarker: JACC Review Topic of the Week.
J Am Coll Cardiol. 2018 Aug 14;72(7):805-813. doi: 10.1016/j.jacc.2018.06.014.
3
Vascular Smooth Muscle-Specific Progerin Expression Accelerates Atherosclerosis and Death in a Mouse Model of Hutchinson-Gilford Progeria Syndrome.
Circulation. 2018 Jul 17;138(3):266-282. doi: 10.1161/CIRCULATIONAHA.117.030856. Epub 2018 Feb 28.
5
Aging in the Cardiovascular System: Lessons from Hutchinson-Gilford Progeria Syndrome.
Annu Rev Physiol. 2018 Feb 10;80:27-48. doi: 10.1146/annurev-physiol-021317-121454. Epub 2017 Sep 20.
6
Cardiac aging and heart disease in humans.
Biophys Rev. 2017 Apr;9(2):131-137. doi: 10.1007/s12551-017-0255-9. Epub 2017 Mar 20.
7
Cardiomyocyte Proliferation: Teaching an Old Dogma New Tricks.
Circ Res. 2017 Feb 17;120(4):627-629. doi: 10.1161/CIRCRESAHA.116.310058.
9
Which Is the Most Significant Cause of Aging?
Antioxidants (Basel). 2015 Dec 17;4(4):793-810. doi: 10.3390/antiox4040793.
10
Cellular senescence in aging and age-related disease: from mechanisms to therapy.
Nat Med. 2015 Dec;21(12):1424-35. doi: 10.1038/nm.4000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验