IEEE J Biomed Health Inform. 2022 Mar;26(3):1196-1207. doi: 10.1109/JBHI.2021.3109119. Epub 2022 Mar 7.
The segmentation of multiple sclerosis (MS) lesions from MR imaging sequences remains a challenging task, due to the characteristics of variant shapes, scattered distributions and unknown numbers of lesions. However, the current automated MS segmentation methods with deep learning models face the challenges of (1) capturing the scattered lesions in multiple regions and (2) delineating the global contour of variant lesions. To address these challenges, in this paper, we propose a novel attention and graph-driven network (DAG-Net), which incorporates (1) the spatial correlations for embracing the lesions in distant regions and (2) the global context for better representing lesions of variant features in a unified architecture. Firstly, the novel local attention coherence mechanism is designed to construct dynamic and expansible graphs for the spatial correlations between pixels and their proximities. Secondly, the proposed spatial-channel attention module enhances features to optimize the global contour delineation, by aggregating relevant features. Moreover, with the dynamic graphs, the learning process of the DAG-Net is interpretable, which in turns support the reliability of segmentation results. Extensive experiments were conducted on a public ISBI2015 dataset and an in-house dataset in comparison to state-of-the-art methods, based on geometrical and clinical metrics. The experimental results validate the effectiveness of proposed DAG-Net on segmenting variant and scatted lesions in multiple regions.
多发性硬化症(MS)病变的磁共振成像(MR)序列分割仍然是一项具有挑战性的任务,这是由于病变具有多变的形状、分散的分布和未知数量的特点。然而,目前基于深度学习模型的自动 MS 分割方法面临着以下两个挑战:(1)捕捉多个区域中分散的病变;(2)描绘具有多变特征的病变的全局轮廓。为了解决这些挑战,在本文中,我们提出了一种新颖的注意力和图驱动网络(DAG-Net),它结合了(1)用于包含远距离病变的空间相关性;(2)用于在统一架构中更好地表示具有多变特征的病变的全局上下文。首先,设计了新颖的局部注意力相干性机制,用于构建像素与其邻近之间的空间相关性的动态可扩展图。其次,所提出的空间通道注意力模块通过聚合相关特征来增强特征,从而优化全局轮廓描绘。此外,通过动态图,DAG-Net 的学习过程具有可解释性,这反过来又支持分割结果的可靠性。在一个公共的 ISBI2015 数据集和一个内部数据集上,与最先进的方法进行了广泛的实验,实验基于几何和临床指标进行。实验结果验证了所提出的 DAG-Net 对分割多个区域中具有多变和分散病变的有效性。