University of the Basque Country (UPV/EHU), Bilbao, Spain.
Department of Neurosciences, University of the Basque Country (UPV/EHU), Bilbao, Spain.
Sci Rep. 2024 Jul 15;14(1):16304. doi: 10.1038/s41598-024-67130-6.
This research paper introduces an efficient approach for the segmentation of active and inactive plaques within Fluid-attenuated inversion recovery (FLAIR) images, employing a convolutional neural network (CNN) model known as DeepLabV3Plus SE with the EfficientNetB0 backbone in Multiple sclerosis (MS), and demonstrates its superior performance compared to other CNN architectures. The study encompasses various critical components, including dataset pre-processing techniques, the utilization of the Squeeze and Excitation Network (SE-Block), and the atrous spatial separable pyramid Block to enhance segmentation capabilities. Detailed descriptions of pre-processing procedures, such as removing the cranial bone segment, image resizing, and normalization, are provided. This study analyzed a cross-sectional cohort of 100 MS patients with active brain plaques, examining 5000 MRI slices. After filtering, 1500 slices were utilized for labeling and deep learning. The training process adopts the dice coefficient as the loss function and utilizes Adam optimization. The study evaluated the model's performance using multiple metrics, including intersection over union (IOU), Dice Score, Precision, Recall, and F1-Score, and offers a comparative analysis with other CNN architectures. Results demonstrate the superior segmentation ability of the proposed model, as evidenced by an IOU of 69.87, Dice Score of 76.24, Precision of 88.89, Recall of 73.52, and F1-Score of 80.47 for the DeepLabV3+SE_EfficientNetB0 model. This research contributes to the advancement of plaque segmentation in FLAIR images and offers a compelling approach with substantial potential for medical image analysis and diagnosis.
本研究论文介绍了一种在液体衰减反转恢复(FLAIR)图像中对活跃和不活跃斑块进行分割的有效方法,使用了一种称为 DeepLabV3Plus SE 的卷积神经网络(CNN)模型,该模型在多发性硬化症(MS)中采用了 EfficientNetB0 骨干,与其他 CNN 架构相比,该模型表现出色。该研究涵盖了各种关键组件,包括数据集预处理技术、利用挤压和激励网络(SE-Block)以及空洞空间可分离金字塔块来增强分割能力。详细描述了预处理过程,例如去除颅骨段、图像调整大小和归一化。本研究分析了 100 名患有活跃脑部斑块的 MS 患者的横断面队列,检查了 5000 个 MRI 切片。过滤后,使用 1500 个切片进行标记和深度学习。训练过程采用骰子系数作为损失函数,并利用 Adam 优化。该研究使用多种指标评估模型性能,包括交并比(IOU)、Dice 分数、精度、召回率和 F1 分数,并与其他 CNN 架构进行了比较分析。结果表明,所提出的模型具有优越的分割能力,其 IOU 为 69.87、Dice 分数为 76.24、精度为 88.89、召回率为 73.52、F1 分数为 80.47。这项研究为 FLAIR 图像中的斑块分割做出了贡献,并为医学图像分析和诊断提供了一种有前途的方法。