Suppr超能文献

深度学习能够实现快速且密集的单分子定位,具有很高的准确性。

Deep learning enables fast and dense single-molecule localization with high accuracy.

机构信息

Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Tübingen, Germany.

Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.

出版信息

Nat Methods. 2021 Sep;18(9):1082-1090. doi: 10.1038/s41592-021-01236-x. Epub 2021 Sep 3.

Abstract

Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE (deep context dependent), a computational tool that can localize single emitters at high density in three dimensions with highest accuracy for a large range of imaging modalities and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 datasets when comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to acquire fast dynamic live-cell SMLM data with reduced light exposure and to image microtubules at ultra-high labeling density. Packaged for simple installation and use, DECODE will enable many laboratories to reduce imaging times and increase localization density in SMLM.

摘要

单分子定位显微镜 (SMLM) 在以纳米分辨率成像细胞结构方面取得了显著成功,但标准分析算法需要稀疏的发射器,这限制了成像速度和标记密度。在这里,我们使用深度学习克服了这一主要限制。我们开发了 DECODE(深度上下文相关),这是一种计算工具,可在三维空间中以最高精度对高密度的单发射器进行定位,适用于多种成像模式和条件。在一个公共软件基准竞赛中,与所有其他拟合器相比,在比较检测精度和定位误差时,它在 12 个数据集的 12 个数据集上均表现出色,通常优势明显。DECODE 使我们能够以较低的光暴露获取快速动态活细胞 SMLM 数据,并以超高标记密度对微管进行成像。DECODE 易于安装和使用,将使许多实验室能够减少 SMLM 的成像时间并提高定位密度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/531d/7611669/1601c80d95a6/EMS130217-f006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验