Suppr超能文献

言语控制的动态连接组。

The dynamic connectome of speech control.

机构信息

Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.

Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2021 Oct 25;376(1836):20200256. doi: 10.1098/rstb.2020.0256. Epub 2021 Sep 6.

Abstract

Speech production relies on the orchestrated control of multiple brain regions. The specific, directional influences within these networks remain poorly understood. We used regression dynamic causal modelling to infer the whole-brain directed (effective) connectivity from functional magnetic resonance imaging data of 36 healthy individuals during the production of meaningful English sentences and meaningless syllables. We identified that the two dynamic connectomes have distinct architectures that are dependent on the complexity of task production. The speech was regulated by a dynamic neural network, the most influential nodes of which were centred around superior and inferior parietal areas and influenced the whole-brain network activity via long-ranging coupling with primary sensorimotor, prefrontal, temporal and insular regions. By contrast, syllable production was controlled by a more compressed, cost-efficient network structure, involving sensorimotor cortico-subcortical integration via superior parietal and cerebellar network hubs. These data demonstrate the mechanisms by which the neural network reorganizes the connectivity of its influential regions, from supporting the fundamental aspects of simple syllabic vocal motor output to multimodal information processing of speech motor output. This article is part of the theme issue 'Vocal learning in animals and humans'.

摘要

言语产生依赖于多个脑区的协调控制。这些网络中特定的、有方向的影响仍然知之甚少。我们使用回归动态因果建模,从 36 名健康个体在生成有意义的英语句子和无意义音节期间的功能磁共振成像数据中推断整个大脑的定向(有效)连接。我们发现,这两个动态连接组具有不同的结构,这取决于任务产生的复杂性。言语受到动态神经网络的调节,其中最有影响力的节点集中在顶叶和顶叶下区域周围,并通过与初级感觉运动、前额叶、颞叶和脑岛区域的长程耦合来影响整个大脑网络的活动。相比之下,音节产生受更压缩、成本效益更高的网络结构控制,涉及通过顶叶和小脑网络枢纽进行感觉运动皮质下整合。这些数据表明了神经网络如何重新组织其有影响力的区域的连接的机制,从支持简单音节发声运动输出的基本方面到言语运动输出的多模态信息处理。本文是主题为“动物和人类的发声学习”的一部分。

相似文献

1
The dynamic connectome of speech control.言语控制的动态连接组。
Philos Trans R Soc Lond B Biol Sci. 2021 Oct 25;376(1836):20200256. doi: 10.1098/rstb.2020.0256. Epub 2021 Sep 6.
2
The Functional Connectome of Speech Control.言语控制的功能连接组
PLoS Biol. 2015 Jul 23;13(7):e1002209. doi: 10.1371/journal.pbio.1002209. eCollection 2015 Jul.
7
The human language effective connectome.人类语言有效连接组。
Neuroimage. 2022 Sep;258:119352. doi: 10.1016/j.neuroimage.2022.119352. Epub 2022 Jun 2.

引用本文的文献

6
Vocal learning in animals and humans.动物和人类的发声学习
Philos Trans R Soc Lond B Biol Sci. 2021 Oct 25;376(1836):20200234. doi: 10.1098/rstb.2020.0234. Epub 2021 Sep 6.

本文引用的文献

1
Regression dynamic causal modeling for resting-state fMRI.静息态 fMRI 的回归动态因果建模。
Hum Brain Mapp. 2021 May;42(7):2159-2180. doi: 10.1002/hbm.25357. Epub 2021 Feb 4.
3
Neural Representations of the Voice Tremor Spectrum.语音震颤频谱的神经表现。
Mov Disord. 2020 Dec;35(12):2290-2300. doi: 10.1002/mds.28259. Epub 2020 Sep 25.
6
Network dynamics of Broca's area during word selection.布罗卡区在选词过程中的网络动态。
PLoS One. 2019 Dec 20;14(12):e0225756. doi: 10.1371/journal.pone.0225756. eCollection 2019.
9
A generative model of whole-brain effective connectivity.全脑有效连接的生成模型。
Neuroimage. 2018 Oct 1;179:505-529. doi: 10.1016/j.neuroimage.2018.05.058. Epub 2018 May 25.
10
Regression DCM for fMRI.功能磁共振成像的回归 DCM 。
Neuroimage. 2017 Jul 15;155:406-421. doi: 10.1016/j.neuroimage.2017.02.090. Epub 2017 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验