Suppr超能文献

针对开发新型抗 COVID-19 的 SARS-CoV-2 M 抑制剂的计算策略。

Computational strategies towards developing novel SARS-CoV-2 M inhibitors against COVID-19.

作者信息

Luo Ding, Tong Jian-Bo, Zhang Xing, Xiao Xue-Chun, Bian Shuai

机构信息

College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an 710021, China.

出版信息

J Mol Struct. 2022 Jan 5;1247:131378. doi: 10.1016/j.molstruc.2021.131378. Epub 2021 Aug 28.

Abstract

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains to be a serious threat due to the lack of a specific therapeutic agent. Computational methods are particularly suitable for rapidly fight against SARS-CoV-2. This present research aims to systematically explore the interaction mechanism of a series of novel bicycloproline-containing SARS-CoV-2 M inhibitors through integrated computational approaches. We designed six structurally modified novel SARS-CoV-2 M inhibitors based on the QSAR study. The four designed compounds with higher docking scores were further explored through molecular docking, molecular dynamics (MD) simulations, free energy calculations, and residual energy contributions estimated by the MM-PBSA approach, with comparison to compound 23(PDB entry 7D3I). This research not only provides robust QSAR models as valuable screening tools for the development of anti-COVID-19 drugs, but also proposes the newly designed SARS-CoV-2 M inhibitors with nanomolar activities that can be potentially used for further characterization to treat SARS-CoV-2 virus.

摘要

由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的新型冠状病毒肺炎大流行,由于缺乏特效治疗药物,仍然是一个严重威胁。计算方法特别适合于快速对抗SARS-CoV-2。本研究旨在通过综合计算方法系统地探索一系列含双环脯氨酸的新型SARS-CoV-2 M抑制剂的相互作用机制。我们基于定量构效关系(QSAR)研究设计了六种结构修饰的新型SARS-CoV-2 M抑制剂。通过分子对接、分子动力学(MD)模拟、自由能计算以及MM-PBSA方法估计的残基能量贡献,对四种对接分数较高的设计化合物与化合物23(PDB登录号7D3I)进行了进一步研究。本研究不仅提供了强大的QSAR模型作为开发抗COVID-19药物的有价值筛选工具,还提出了具有纳摩尔活性的新设计的SARS-CoV-2 M抑制剂,可用于进一步表征以治疗SARS-CoV-2病毒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e277/8398673/30586cffd687/ga1_lrg.jpg

相似文献

1
Computational strategies towards developing novel SARS-CoV-2 M inhibitors against COVID-19.
J Mol Struct. 2022 Jan 5;1247:131378. doi: 10.1016/j.molstruc.2021.131378. Epub 2021 Aug 28.
2
Cyanobacterial metabolites as promising drug leads against the M and PL of SARS-CoV-2: an analysis.
J Biomol Struct Dyn. 2021 Oct;39(16):6218-6230. doi: 10.1080/07391102.2020.1794972. Epub 2020 Jul 21.
5
Potential of NO donor furoxan as SARS-CoV-2 main protease (M) inhibitors: analysis.
J Biomol Struct Dyn. 2021 Sep;39(15):5804-5818. doi: 10.1080/07391102.2020.1790038. Epub 2020 Jul 8.
6
Rational design of potent anti-COVID-19 main protease drugs: An extensive multi-spectrum in silico approach.
J Mol Liq. 2021 May 15;330:115636. doi: 10.1016/j.molliq.2021.115636. Epub 2021 Feb 12.
7
Discovery of C-12 dithiocarbamate andrographolide analogues as inhibitors of SARS-CoV-2 main protease: and studies.
Comput Struct Biotechnol J. 2022 May 30;20:2784-2797. doi: 10.1016/j.csbj.2022.05.053. eCollection 2022.
8
Protein-Ligand Docking Simulations with AutoDock4 Focused on the Main Protease of SARS-CoV-2.
Curr Med Chem. 2021;28(37):7614-7633. doi: 10.2174/0929867328666210329094111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验