Suppr超能文献

复杂故事中的情感建模:斯坦福情感叙事数据集

Modeling emotion in complex stories: the Stanford Emotional Narratives Dataset.

作者信息

Ong Desmond C, Wu Zhengxuan, Zhi-Xuan Tan, Reddan Marianne, Kahhale Isabella, Mattek Alison, Zaki Jamil

机构信息

Department of Information Systems and Analytics, National University of Singapore, and with the ASTAR Artificial Intelligence Initiative, Agency for Science, Technology and Research, Singapore.

Department of Management Science and Engineering, Stanford University.

出版信息

IEEE Trans Affect Comput. 2021 Jul-Sep;12(3):579-594. doi: 10.1109/taffc.2019.2955949. Epub 2019 Nov 26.

Abstract

Human emotions unfold over time, and more affective computing research has to prioritize capturing this crucial component of real-world affect. Modeling dynamic emotional stimuli requires solving the twin challenges of time-series modeling and of collecting high-quality time-series datasets. We begin by assessing the state-of-the-art in time-series emotion recognition, and we review contemporary time-series approaches in affective computing, including discriminative and generative models. We then introduce the first version of the Stanford Emotional Narratives Dataset (SENDv1): a set of rich, multimodal videos of self-paced, unscripted emotional narratives, annotated for emotional valence over time. The complex narratives and naturalistic expressions in this dataset provide a challenging test for contemporary time-series emotion recognition models. We demonstrate several baseline and state-of-the-art modeling approaches on the SEND, including a Long Short-Term Memory model and a multimodal Variational Recurrent Neural Network, which perform comparably to the human-benchmark. We end by discussing the implications for future research in time-series affective computing.

摘要

人类情感随时间展开,更多情感计算研究必须优先捕捉现实世界情感的这一关键组成部分。对动态情感刺激进行建模需要解决时间序列建模以及收集高质量时间序列数据集这两个双重挑战。我们首先评估时间序列情感识别的当前水平,并回顾情感计算中的当代时间序列方法,包括判别模型和生成模型。然后,我们介绍斯坦福情感叙事数据集的第一个版本(SENDv1):一组丰富的多模态视频,这些视频是关于自定节奏、无脚本的情感叙事,随时间标注了情感效价。该数据集中复杂的叙事和自然主义的表达为当代时间序列情感识别模型提供了具有挑战性的测试。我们展示了在SEND上的几种基线和当前最优的建模方法,包括长短期记忆模型和多模态变分递归神经网络,它们的表现与人类基准相当。最后,我们讨论了对时间序列情感计算未来研究的启示。

相似文献

1
Modeling emotion in complex stories: the Stanford Emotional Narratives Dataset.复杂故事中的情感建模:斯坦福情感叙事数据集
IEEE Trans Affect Comput. 2021 Jul-Sep;12(3):579-594. doi: 10.1109/taffc.2019.2955949. Epub 2019 Nov 26.
6
EEG-Based Emotion Recognition with Similarity Learning Network.基于脑电图的情感识别与相似性学习网络
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1209-1212. doi: 10.1109/EMBC.2019.8857499.

引用本文的文献

3
The construction of emotional meaning in language.语言中情感意义的构建。
Commun Psychol. 2025 Jul 7;3(1):99. doi: 10.1038/s44271-025-00255-0.
9
Amplification in the evaluation of multiple emotional expressions over time.随时间评估多种情绪表达的放大。
Nat Hum Behav. 2022 Oct;6(10):1408-1416. doi: 10.1038/s41562-022-01390-y. Epub 2022 Jun 27.

本文引用的文献

1
Applying Probabilistic Programming to Affective Computing.将概率编程应用于情感计算。
IEEE Trans Affect Comput. 2021 Apr-Jun;12(2):306-317. doi: 10.1109/taffc.2019.2905211. Epub 2019 Mar 15.
3
SEWA DB: A Rich Database for Audio-Visual Emotion and Sentiment Research in the Wild.SEWA DB:一个用于野外视听情感和情感研究的丰富数据库。
IEEE Trans Pattern Anal Mach Intell. 2021 Mar;43(3):1022-1040. doi: 10.1109/TPAMI.2019.2944808. Epub 2021 Feb 4.
5
Compositional inductive biases in function learning.函数学习中的组合归纳偏差。
Cogn Psychol. 2017 Dec;99:44-79. doi: 10.1016/j.cogpsych.2017.11.002. Epub 2017 Nov 16.
6
Event Detection in Continuous Video: An Inference in Point Process Approach.连续视频中的事件检测:点过程方法中的推断。
IEEE Trans Image Process. 2017 Dec;26(12):5680-5691. doi: 10.1109/TIP.2017.2745209. Epub 2017 Aug 25.
7
Building machines that learn and think like people.建造像人一样学习和思考的机器。
Behav Brain Sci. 2017 Jan;40:e253. doi: 10.1017/S0140525X16001837. Epub 2016 Nov 24.
9
Affective cognition: Exploring lay theories of emotion.情感认知:探索外行的情绪理论
Cognition. 2015 Oct;143:141-62. doi: 10.1016/j.cognition.2015.06.010. Epub 2015 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验