Ong Desmond C, Wu Zhengxuan, Zhi-Xuan Tan, Reddan Marianne, Kahhale Isabella, Mattek Alison, Zaki Jamil
Department of Information Systems and Analytics, National University of Singapore, and with the ASTAR Artificial Intelligence Initiative, Agency for Science, Technology and Research, Singapore.
Department of Management Science and Engineering, Stanford University.
IEEE Trans Affect Comput. 2021 Jul-Sep;12(3):579-594. doi: 10.1109/taffc.2019.2955949. Epub 2019 Nov 26.
Human emotions unfold over time, and more affective computing research has to prioritize capturing this crucial component of real-world affect. Modeling dynamic emotional stimuli requires solving the twin challenges of time-series modeling and of collecting high-quality time-series datasets. We begin by assessing the state-of-the-art in time-series emotion recognition, and we review contemporary time-series approaches in affective computing, including discriminative and generative models. We then introduce the first version of the Stanford Emotional Narratives Dataset (SENDv1): a set of rich, multimodal videos of self-paced, unscripted emotional narratives, annotated for emotional valence over time. The complex narratives and naturalistic expressions in this dataset provide a challenging test for contemporary time-series emotion recognition models. We demonstrate several baseline and state-of-the-art modeling approaches on the SEND, including a Long Short-Term Memory model and a multimodal Variational Recurrent Neural Network, which perform comparably to the human-benchmark. We end by discussing the implications for future research in time-series affective computing.
人类情感随时间展开,更多情感计算研究必须优先捕捉现实世界情感的这一关键组成部分。对动态情感刺激进行建模需要解决时间序列建模以及收集高质量时间序列数据集这两个双重挑战。我们首先评估时间序列情感识别的当前水平,并回顾情感计算中的当代时间序列方法,包括判别模型和生成模型。然后,我们介绍斯坦福情感叙事数据集的第一个版本(SENDv1):一组丰富的多模态视频,这些视频是关于自定节奏、无脚本的情感叙事,随时间标注了情感效价。该数据集中复杂的叙事和自然主义的表达为当代时间序列情感识别模型提供了具有挑战性的测试。我们展示了在SEND上的几种基线和当前最优的建模方法,包括长短期记忆模型和多模态变分递归神经网络,它们的表现与人类基准相当。最后,我们讨论了对时间序列情感计算未来研究的启示。