Suppr超能文献

肝转移瘤经动脉放射性栓塞治疗反应的预测:治疗前锥形束CT的影像组学分析:一项概念验证研究

Prediction of treatment response to transarterial radioembolization of liver metastases: Radiomics analysis of pre-treatment cone-beam CT: A proof of concept study.

作者信息

Kobe Adrian, Zgraggen Juliana, Messmer Florian, Puippe Gilbert, Sartoretti Thomas, Alkadhi Hatem, Pfammatter Thomas, Mannil Manoj

机构信息

Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

Clinic of Radiology, University Hospital Münster, University of Münster, Münster, Germany.

出版信息

Eur J Radiol Open. 2021 Aug 30;8:100375. doi: 10.1016/j.ejro.2021.100375. eCollection 2021.

Abstract

PURPOSE

To investigate the potential of texture analysis and machine learning to predict treatment response to transarterial radioembolization (TARE) on pre-interventional cone-beam computed tomography (CBCT) images in patients with liver metastases.

MATERIALS AND METHODS

In this IRB-approved retrospective single-center study 36 patients with a total of 104 liver metastases (56 % male, mean age 61.1 ± 13 years) underwent CBCT prior to TARE and follow-up imaging 6 months after therapy. Treatment response was evaluated according to RECIST version 1.1 and dichotomized into disease control (partial response/stable disease) versus disease progression (progressive disease). After target lesion segmentation, 104 radiomics features corresponding to seven different feature classes were extracted with the pyRadiomics package. After dimension reduction machine learning classifications were performed on a custom artificial neural network (ANN). Ten-fold cross validation on a previously unseen test data set was performed.

RESULTS

The average administered cumulative activity from TARE was 1.6 Gbq (± 0.5 Gbq). At a mean follow-up of 5.9 ± 0.8 months disease control was achieved in 82 % of metastases. After dimension reduction, 15 of 104 (15 %) texture analysis features remained for further analysis. On a previously unseen set of liver metastases the Multilayer Perceptron ANN yielded a sensitivity of 94.2 %, specificity of 67.7 % and an area-under-the receiver operating characteristics curve of 0.85.

CONCLUSION

Our study indicates that texture analysis-based machine learning may has potential to predict treatment response to TARE using pre-treatment CBCT images of patients with liver metastases with high accuracy.

摘要

目的

探讨纹理分析和机器学习在预测肝转移瘤患者经动脉放射性栓塞(TARE)治疗前锥形束计算机断层扫描(CBCT)图像上的治疗反应方面的潜力。

材料与方法

在这项经机构审查委员会批准的回顾性单中心研究中,36例共有104个肝转移瘤的患者(56%为男性,平均年龄61.1±13岁)在TARE治疗前接受了CBCT检查,并在治疗后6个月进行了随访成像。根据实体瘤疗效评价标准(RECIST)1.1版评估治疗反应,并将其分为疾病控制(部分缓解/疾病稳定)与疾病进展(疾病进展)。在目标病灶分割后,使用pyRadiomics软件包提取了与七种不同特征类别相对应的104个影像组学特征。在降维后,在定制的人工神经网络(ANN)上进行机器学习分类。对一个之前未见过的测试数据集进行十折交叉验证。

结果

TARE的平均给药累积活度为1.6GBq(±0.5GBq)。在平均随访5.9±0.8个月时,82%的转移瘤实现了疾病控制。降维后,104个(15%)纹理分析特征中的15个保留用于进一步分析。在一组之前未见过的肝转移瘤上,多层感知器人工神经网络的敏感性为94.2%,特异性为67.7%,受试者操作特征曲线下面积为0.85。

结论

我们的研究表明,基于纹理分析的机器学习可能有潜力使用肝转移瘤患者治疗前的CBCT图像高精度地预测TARE的治疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0157/8408624/04990cb42949/gr1.jpg

相似文献

2
Imaging biomarkers to stratify lymph node metastases in abdominal CT - Is radiomics superior to dual-energy material decomposition?
Eur J Radiol Open. 2022 Dec 9;10:100459. doi: 10.1016/j.ejro.2022.100459. eCollection 2023.
3
Assessment of Therapy Response to Transarterial Radioembolization for Liver Metastases by Means of Post-treatment MRI-Based Texture Analysis.
Cardiovasc Intervent Radiol. 2018 Oct;41(10):1545-1556. doi: 10.1007/s00270-018-2004-2. Epub 2018 Jun 7.
5
Radiomics-Based Prediction Model for Outcome of Radioembolization in Metastatic Colorectal Cancer.
Cardiovasc Intervent Radiol. 2024 Apr;47(4):462-471. doi: 10.1007/s00270-024-03680-6. Epub 2024 Feb 28.
7
Can texture analysis based on single unenhanced CT accurately predict the WHO/ISUP grading of localized clear cell renal cell carcinoma?
Abdom Radiol (NY). 2021 Sep;46(9):4289-4300. doi: 10.1007/s00261-021-03090-z. Epub 2021 Apr 28.
10
Correlation of Radiomics with Treatment Response in Liver Metastases.
Acad Radiol. 2024 Aug;31(8):3133-3141. doi: 10.1016/j.acra.2023.11.007. Epub 2023 Dec 11.

引用本文的文献

1
Research progress on machine algorithm prediction of liver cancer prognosis after intervention therapy.
Am J Cancer Res. 2024 Sep 25;14(9):4580-4596. doi: 10.62347/BEAO1926. eCollection 2024.
3
New frontiers in radioembolization.
Ther Adv Med Oncol. 2024 Sep 30;16:17588359241280692. doi: 10.1177/17588359241280692. eCollection 2024.
4
Radiomics-Based Prediction Model for Outcome of Radioembolization in Metastatic Colorectal Cancer.
Cardiovasc Intervent Radiol. 2024 Apr;47(4):462-471. doi: 10.1007/s00270-024-03680-6. Epub 2024 Feb 28.
5
Machine Learning Combined with Radiomics Facilitating the Personal Treatment of Malignant Liver Tumors.
Biomedicines. 2023 Dec 26;12(1):58. doi: 10.3390/biomedicines12010058.
6
Performance and clinical applicability of machine learning in liver computed tomography imaging: a systematic review.
Eur Radiol. 2023 Oct;33(10):6689-6717. doi: 10.1007/s00330-023-09609-w. Epub 2023 May 12.
8
Colorectal liver metastases patients prognostic assessment: prospects and limits of radiomics and radiogenomics.
Infect Agent Cancer. 2023 Mar 16;18(1):18. doi: 10.1186/s13027-023-00495-x.
9
Technological Advancements in Interventional Oncology.
Diagnostics (Basel). 2023 Jan 7;13(2):228. doi: 10.3390/diagnostics13020228.

本文引用的文献

1
Machine Learning Offers Exciting Potential for Predicting Postprocedural Outcomes: A Framework for Developing Random Forest Models in IR.
J Vasc Interv Radiol. 2020 Jun;31(6):1018-1024.e4. doi: 10.1016/j.jvir.2019.11.030. Epub 2020 May 4.
2
A review of original articles published in the emerging field of radiomics.
Eur J Radiol. 2020 Jun;127:108991. doi: 10.1016/j.ejrad.2020.108991. Epub 2020 Apr 12.
3
Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would best respond to radioembolisation.
Eur Radiol. 2020 Aug;30(8):4534-4544. doi: 10.1007/s00330-020-06795-9. Epub 2020 Mar 29.
5
A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization.
Radiol Artif Intell. 2019 Sep;1(5). doi: 10.1148/ryai.2019180021. Epub 2019 Sep 25.
7
Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma.
Eur J Radiol. 2020 Jan;122:108755. doi: 10.1016/j.ejrad.2019.108755. Epub 2019 Nov 20.
10
The present and future of deep learning in radiology.
Eur J Radiol. 2019 May;114:14-24. doi: 10.1016/j.ejrad.2019.02.038. Epub 2019 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验