Suppr超能文献

数据驱动的聚类分析确定了区分儿童和青少年多系统炎症综合征与急性新冠病毒病的特征。

Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents.

作者信息

Geva Alon, Patel Manish M, Newhams Margaret M, Young Cameron C, Son Mary Beth F, Kong Michele, Maddux Aline B, Hall Mark W, Riggs Becky J, Singh Aalok R, Giuliano John S, Hobbs Charlotte V, Loftis Laura L, McLaughlin Gwenn E, Schwartz Stephanie P, Schuster Jennifer E, Babbitt Christopher J, Halasa Natasha B, Gertz Shira J, Doymaz Sule, Hume Janet R, Bradford Tamara T, Irby Katherine, Carroll Christopher L, McGuire John K, Tarquinio Keiko M, Rowan Courtney M, Mack Elizabeth H, Cvijanovich Natalie Z, Fitzgerald Julie C, Spinella Philip C, Staat Mary A, Clouser Katharine N, Soma Vijaya L, Dapul Heda, Maamari Mia, Bowens Cindy, Havlin Kevin M, Mourani Peter M, Heidemann Sabrina M, Horwitz Steven M, Feldstein Leora R, Tenforde Mark W, Newburger Jane W, Mandl Kenneth D, Randolph Adrienne G

机构信息

Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston,1These authors contributed equally to this work.2A complete list of members and affiliations is provided in the Supplementary Appendix. MA, USA.

Computational Health Informatics Program, Boston Children's Hospital, Boston, MA.

出版信息

EClinicalMedicine. 2021 Oct;40:101112. doi: 10.1016/j.eclinm.2021.101112. Epub 2021 Aug 31.

Abstract

BACKGROUND

Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia.

METHODS

We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians) <21 years old hospitalized with COVID-19-related illness admitted between 15 March 2020 and 31 December 2020. We compared prevalence of assigned MIS-C labels and clinical features among clusters, followed by recursive feature elimination to identify characteristics of potentially misclassified MIS-C-labeled patients.

FINDINGS

Of 94 clinical features tested, 46 were retained for clustering. Cluster 1 patients ( = 498; 92% labeled MIS-C) were mostly previously healthy (71%), with mean age 7·2 ± 0·4 years, predominant cardiovascular (77%) and/or mucocutaneous (82%) involvement, high inflammatory biomarkers, and mostly SARS-CoV-2 PCR negative (60%). Cluster 2 patients ( = 445; 27% labeled MIS-C) frequently had pre-existing conditions (79%, with 39% respiratory), were similarly 7·4 ± 2·1 years old, and commonly had chest radiograph infiltrates (79%) and positive PCR testing (90%). Cluster 3 patients ( = 583; 19% labeled MIS-C) were younger (2·8 ± 2·0 y), PCR positive (86%), with less inflammation. Radiographic findings of pulmonary infiltrates and positive SARS-CoV-2 PCR accurately distinguished cluster 2 MIS-C labeled patients from cluster 1 patients.

INTERPRETATION

Using a data driven, unsupervised approach, we identified features that cluster patients into a group with high likelihood of having MIS-C. Other features identified a cluster of patients more likely to have acute severe COVID-19 pulmonary disease, and patients in this cluster labeled by clinicians as MIS-C may be misclassified. These data driven phenotypes may help refine the diagnosis of MIS-C.

摘要

背景

儿童多系统炎症综合征(MIS-C)的共识标准旨在实现最大敏感性,因此纳入了患有急性新冠病毒肺炎的患者。

方法

我们对2020年3月15日至2020年12月31日期间因新冠病毒相关疾病住院的1526名21岁以下患者(临床医生标记为684例MIS-C)的数据进行了无监督聚类。我们比较了各聚类中指定的MIS-C标签的患病率和临床特征,随后进行递归特征消除以确定可能被错误分类为MIS-C标签患者的特征。

结果

在测试的94项临床特征中,46项被保留用于聚类。聚类1的患者(n = 498;92%被标记为MIS-C)大多既往健康(71%),平均年龄7.2±0.4岁,主要累及心血管系统(77%)和/或皮肤黏膜(82%),炎症生物标志物水平高,且大多新冠病毒PCR检测呈阴性(60%)。聚类2的患者(n = 445;27%被标记为MIS-C)常有基础疾病(79%,其中39%有呼吸系统疾病),年龄相近,为7.4±2.1岁,胸部X线常显示浸润(79%)且PCR检测呈阳性(90%)。聚类3的患者(n = 583;19%被标记为MIS-C)年龄较小(2.8±2.0岁),PCR检测呈阳性(86%),炎症较轻。肺部浸润的影像学表现和新冠病毒PCR阳性准确区分了聚类2中被标记为MIS-C的患者与聚类1的患者。

解读

使用数据驱动的无监督方法,我们确定了将患者聚类为高度可能患有MIS-C的一组的特征。其他特征确定了一组更可能患有急性重症新冠病毒肺炎的患者,而临床医生将该聚类中的患者标记为MIS-C可能存在错误分类。这些数据驱动的表型可能有助于完善MIS-C的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb70/8411205/3c07c1885439/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验