Suppr超能文献

基于局部高斯分布的无监督病灶检测的规范上升。

Normative ascent with local gaussians for unsupervised lesion detection.

机构信息

ETH Zurich, Zurich, Switzerland.

Imperial College London, London, UK.

出版信息

Med Image Anal. 2021 Dec;74:102208. doi: 10.1016/j.media.2021.102208. Epub 2021 Aug 17.

Abstract

Unsupervised abnormality detection is an appealing approach to identify patterns that are not present in training data without specific annotations for such patterns. In the medical imaging field, methods taking this approach have been proposed to detect lesions. The appeal of this approach stems from the fact that it does not require lesion-specific supervision and can potentially generalize to any sort of abnormal patterns. The principle is to train a generative model on images from healthy individuals to estimate the distribution of images of the normal anatomy, i.e., a normative distribution, and detect lesions as out-of-distribution regions. Restoration-based techniques that modify a given image by taking gradient ascent steps with respect to a posterior distribution composed of a normative distribution and a likelihood term recently yielded state-of-the-art results. However, these methods do not explicitly model ascent directions with respect to the normative distribution, i.e. normative ascent direction, which is essential for successful restoration. In this work, we introduce a novel approach for unsupervised lesion detection by modeling normative ascent directions. We present different modelling options based on the defined ascent directions with local Gaussians. We further extend the proposed method to efficiently utilize 3D information, which has not been explored in most existing works. We experimentally show that the proposed method provides higher accuracy in detection and produces more realistic restored images. The performance of the proposed method is evaluated against baselines on publicly available BRATS and ATLAS stroke lesion datasets; the detection accuracy of the proposed method surpasses the current state-of-the-art results.

摘要

无监督异常检测是一种很有吸引力的方法,可以在没有特定模式标注的情况下识别训练数据中不存在的模式。在医学成像领域,已经提出了采用这种方法的方法来检测病变。这种方法的吸引力在于它不需要特定于病变的监督,并且可以潜在地推广到任何类型的异常模式。其原理是在健康个体的图像上训练生成模型,以估计正常解剖结构的图像分布,即规范分布,并将病变检测为离群区域。最近,基于恢复的技术通过针对由规范分布和似然项组成的后验分布进行梯度上升步骤来修改给定的图像,从而产生了最先进的结果。然而,这些方法并没有明确地针对规范分布建模上升方向,即规范上升方向,这对于成功恢复是至关重要的。在这项工作中,我们通过对规范上升方向进行建模,引入了一种新的用于无监督病变检测的方法。我们根据定义的上升方向提出了不同的建模选项,使用局部高斯分布。我们进一步扩展了所提出的方法,以有效地利用三维信息,这在大多数现有工作中尚未得到探索。我们通过在公开的 BRATS 和 ATLAS 中风病变数据集上进行实验,证明了所提出的方法在检测方面提供了更高的准确性,并产生了更真实的恢复图像。我们还将所提出的方法与基线进行了性能评估,所提出的方法的检测精度超过了当前的最先进水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验