文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单宁酸介导化学还原法合成单分散银纳米颗粒的生长动力学研究及其表征

Growth Kinetic Study of Tannic Acid Mediated Monodispersed Silver Nanoparticles Synthesized by Chemical Reduction Method and Its Characterization.

作者信息

Gangwar Chinky, Yaseen Bushra, Kumar Indresh, Singh Narendra Kumar, Naik Radhey Mohan

机构信息

Department of Chemistry, Lucknow University, Lucknow, Uttar Pradesh 226007, India.

出版信息

ACS Omega. 2021 Aug 19;6(34):22344-22356. doi: 10.1021/acsomega.1c03100. eCollection 2021 Aug 31.


DOI:10.1021/acsomega.1c03100
PMID:34497923
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8412910/
Abstract

The complex process of nanoparticle formation in an aqueous solution is governed by kinetics and thermodynamic factors. This paper describes a room-temperature growth kinetic study and evaluation of thermodynamic activation parameters of monodispersed silver nanoparticles (AgNPs) synthesized in alkaline medium by chemical reduction method using AgNO as a source of Ag ions and tannic acid (TA) as a reductant (reducing agent) as well as a capping or stabilizing agent in the absence of any other external stabilizer. A simple and conveniently handled reaction process was monitored spectrophotometrically to study the growth kinetics in an aqueous solution as a function of the concentration of silver ion, hydroxide ion, and TA, respectively. The neutral nucleophilic group donates the electron density via a lone pair of electrons to Ag ions for the reduction process, i.e., for the nucleation of AgNPs colloid. Also, a few silver ions form a silver oxide, which also facilitates the nucleation center to enhance the growth of AgNPs colloid. The decrease and increase in rate constant on varying the TA concentration showed its adsorption onto the surface of metallic AgNPs and stabilized by polygalloyl units of TA and were the main elements to control the growth kinetics. Consequently, stabilized TA-mediated AgNPs are formed using the electron donated by quinone form of TA followed by a pseudo-first-order reaction. Apart from this, nanoparticles formed were characterized using UV-visible spectrophotometry, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and powder X-ray diffraction techniques to confirm its formation during the present kinetic study.

摘要

水溶液中纳米颗粒形成的复杂过程受动力学和热力学因素控制。本文描述了在室温下对通过化学还原法在碱性介质中合成的单分散银纳米颗粒(AgNPs)的生长动力学研究以及热力学活化参数的评估,该方法使用AgNO作为银离子源,单宁酸(TA)作为还原剂(还原试剂)以及封端或稳定剂,且不存在任何其他外部稳定剂。通过分光光度法监测一个简单且易于操作的反应过程,以分别研究水溶液中作为银离子、氢氧根离子和TA浓度函数的生长动力学。中性亲核基团通过孤对电子将电子密度提供给银离子用于还原过程,即用于AgNPs胶体的成核。此外,一些银离子形成氧化银,这也促进了成核中心以增强AgNPs胶体的生长。改变TA浓度时速率常数的降低和增加表明其吸附在金属AgNPs表面,并由TA的聚没食子酰单元稳定,这是控制生长动力学的主要因素。因此,利用TA醌形式提供的电子形成稳定的TA介导的AgNPs,随后发生准一级反应。除此之外,使用紫外可见分光光度法、傅里叶变换红外光谱法、场发射扫描电子显微镜、能量色散X射线光谱法、透射电子显微镜和粉末X射线衍射技术对形成的纳米颗粒进行表征,以确认其在当前动力学研究过程中的形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/aca819f77148/ao1c03100_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/1176dff92668/ao1c03100_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/518467c6dcbe/ao1c03100_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/a0c966a83ef6/ao1c03100_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/a126c168c984/ao1c03100_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/5bea9a36a98b/ao1c03100_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/2fd421931d8c/ao1c03100_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/03996686c905/ao1c03100_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/d3eb9e34c758/ao1c03100_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/c21c6c1e358c/ao1c03100_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/21d2f26c8e65/ao1c03100_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/d5f494d2bc06/ao1c03100_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/aca819f77148/ao1c03100_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/1176dff92668/ao1c03100_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/518467c6dcbe/ao1c03100_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/a0c966a83ef6/ao1c03100_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/a126c168c984/ao1c03100_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/5bea9a36a98b/ao1c03100_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/2fd421931d8c/ao1c03100_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/03996686c905/ao1c03100_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/d3eb9e34c758/ao1c03100_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/c21c6c1e358c/ao1c03100_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/21d2f26c8e65/ao1c03100_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/d5f494d2bc06/ao1c03100_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11b8/8412910/aca819f77148/ao1c03100_0012.jpg

相似文献

[1]
Growth Kinetic Study of Tannic Acid Mediated Monodispersed Silver Nanoparticles Synthesized by Chemical Reduction Method and Its Characterization.

ACS Omega. 2021-8-19

[2]
Detailed Kinetic and Mechanistic Study for the Preparation of Silver Nanoparticles by a Chemical Reduction Method in the Presence of a Neuroleptic Agent (Gabapentin) at an Alkaline pH and its Characterization.

ACS Omega. 2022-2-8

[3]
Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

Arch Pharm Res. 2016-2-19

[4]
Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (FeO@TA/Ag) for highly active catalytic reduction of 4-nitrophenol, Rhodamine B and Methylene blue.

Mater Sci Eng C Mater Biol Appl. 2019-3-12

[5]
Kinetic and Mechanistic Studies of the Formation of Silver Nanoparticles by Nicotinamide as a Reducing Agent.

ACS Omega. 2022-4-14

[6]
Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of , , and .

Pharmacogn Mag. 2017-7

[7]
Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity.

Int J Nanomedicine. 2015-10-1

[8]
Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus.

Exp Parasitol. 2012-6-27

[9]
Preparation of AgNPs/saponite nanocomposites without reduction agents and study of its antibacterial activity.

Colloids Surf B Biointerfaces. 2019-5-1

[10]
Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena).

Colloids Surf B Biointerfaces. 2010-7-4

引用本文的文献

[1]
Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano. 2025-9-8

[2]
Nasal Spray Disinfectant for Respiratory Infections Based on Functionalized Silver Nanoparticles: A Physicochemical and Docking Approach.

Nanomaterials (Basel). 2025-3-31

[3]
SNaP-C: Development of a Silver Nanoparticle Antioxidant Assay for the Selective Quantitative Analysis of Vitamin C in Beverages.

ACS Omega. 2025-1-6

[4]
A review on template-assisted approaches & self assembly of nanomaterials at liquid/liquid interface.

Heliyon. 2024-8-23

[5]
Synthesis characterization and application of butyl acrylate mediated eco-friendly silver nanoparticles using ultrasonic radiation.

Heliyon. 2024-3-21

[6]
Engineering Degradation Rate of Polyphosphazene-Based Layer-by-Layer Polymer Coatings.

J Funct Biomater. 2024-1-23

[7]
Tannic Acid-Functionalized Silver Nanoparticles as Colorimetric Probe for the Simultaneous and Sensitive Detection of Aluminum(III) and Fluoride Ions.

ACS Omega. 2023-9-29

[8]
Development of a Sensitive SERS Method for Label-Free Detection of Hexavalent Chromium in Tea Using Carbimazole Redox Reaction.

Foods. 2023-7-11

[9]
Fabrication of α-FeO Nanostructures: Synthesis, Characterization, and Their Promising Application in the Treatment of Carcinoma A549 Lung Cancer Cells.

ACS Omega. 2022-6-13

[10]
Kinetic and Mechanistic Studies of the Formation of Silver Nanoparticles by Nicotinamide as a Reducing Agent.

ACS Omega. 2022-4-14

本文引用的文献

[1]
Tannic acid-modified silver nanoparticles enhance the anti-Acanthamoeba activity of three multipurpose contact lens solutions without increasing their cytotoxicity.

Parasit Vectors. 2020-12-22

[2]
Synthesis of Citrate-Stabilized Silver Nanoparticles Modified by Thermal and pH Preconditioned Tannic Acid.

Nanomaterials (Basel). 2020-10-15

[3]
Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation.

Biomater Sci. 2020-9-7

[4]
Dendrimer as a multifunctional capping agent for metal nanoparticles for use in bioimaging, drug delivery and sensor applications.

J Mater Chem B. 2018-4-28

[5]
Protocol optimization for a fast, simple and economical chemical reduction synthesis of antimicrobial silver nanoparticles in non-specialized facilities.

BMC Res Notes. 2019-11-27

[6]
Silver Nanoparticles: Synthesis and Application for Nanomedicine.

Int J Mol Sci. 2019-2-17

[7]
Biosynthetic Conversion of Ag⁺ to highly Stable Ag⁰ Nanoparticles by Wild Type and Cell Wall Deficient Strains of .

Molecules. 2018-12-28

[8]
Tannic acid-modified silver nanoparticles for wound healing: the importance of size.

Int J Nanomedicine. 2018-2-16

[9]
Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing.

Chem Rev. 2017-9-13

[10]
The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles.

J Nanopart Res. 2017

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索