Suppr超能文献

使用人工智能优化基于磁共振成像的脑肿瘤分类与检测:神经网络、迁移学习、数据增强及交叉变换器网络的对比分析

Optimizing MRI-based brain tumor classification and detection using AI: A comparative analysis of neural networks, transfer learning, data augmentation, and the cross-transformer network.

作者信息

Anaya-Isaza Andrés, Mera-Jiménez Leonel, Verdugo-Alejo Lucía, Sarasti Luis

机构信息

Indigo Research, Bogota 410010, Colombia.

出版信息

Eur J Radiol Open. 2023 Mar 14;10:100484. doi: 10.1016/j.ejro.2023.100484. eCollection 2023.

Abstract

Early detection and diagnosis of brain tumors are crucial to taking adequate preventive measures, as with most cancers. On the other hand, artificial intelligence (AI) has grown exponentially, even in such complex environments as medicine. Here it's proposed a framework to explore state-of-the-art deep learning architectures for brain tumor classification and detection. An own development called Cross-Transformer is also included, which consists of three scalar products that combine self-care model keys, queries, and values. Initially, we focused on the classification of three types of tumors: glioma, meningioma, and pituitary. With the Figshare brain tumor dataset was trained the InceptionResNetV2, InceptionV3, DenseNet121, Xception, ResNet50V2, VGG19, and EfficientNetB7 networks. Over 97 % of classifications were accurate in this experiment, which provided a network's performance overview. Subsequently, we focused on tumor detection using the Brain MRI Images for Brain Tumor Detection and The Cancer Genome Atlas Low-Grade Glioma database. The development encompasses learning transfer, data augmentation, as well as image acquisition sequences; T1-weighted images (T1WI), T1-weighted post-gadolinium (T1-Gd), and Fluid-Attenuated Inversion Recovery (FLAIR). Based on the results, using learning transfer and data augmentation increased accuracy by up to 6 %, with a p-value below the significance level of 0.05. As well, the FLAIR sequence was the most efficient for detection. As an alternative, our proposed model proved to be the most effective in terms of training time, using approximately half the time of the second fastest network.

摘要

与大多数癌症一样,脑肿瘤的早期检测和诊断对于采取适当的预防措施至关重要。另一方面,即使在医学这样复杂的环境中,人工智能(AI)也呈指数级增长。本文提出了一个框架,用于探索用于脑肿瘤分类和检测的最先进深度学习架构。还包括一个自主开发的名为Cross-Transformer的模型,它由三个标量积组成,这些标量积结合了自我关注模型的键、查询和值。最初,我们专注于三种肿瘤类型的分类:神经胶质瘤、脑膜瘤和垂体瘤。使用Figshare脑肿瘤数据集对InceptionResNetV2、InceptionV3、DenseNet121、Xception、ResNet50V2、VGG19和EfficientNetB7网络进行了训练。在这个实验中,超过97%的分类是准确的,这提供了网络性能的概述。随后,我们使用用于脑肿瘤检测的脑部MRI图像和癌症基因组图谱低级别胶质瘤数据库专注于肿瘤检测。开发内容包括学习迁移、数据增强以及图像采集序列;T1加权图像(T1WI)、T1加权钆增强后图像(T1-Gd)和液体衰减反转恢复(FLAIR)。基于结果,使用学习迁移和数据增强可将准确率提高多达6%,p值低于0.05的显著性水平。同样,FLAIR序列在检测方面最有效。作为一种替代方案,我们提出的模型在训练时间方面被证明是最有效的,使用的时间约为第二快网络的一半。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfd8/10027502/5d38981e3e97/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验