Suppr超能文献

工程介孔硅纳米颗粒以实现万古霉素的口服递送。

Engineering mesoporous silica nanoparticles towards oral delivery of vancomycin.

机构信息

School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia.

School of Materials Science and Engineering, University of New South Wales, New South Wales, Australia.

出版信息

J Mater Chem B. 2021 Sep 15;9(35):7145-7166. doi: 10.1039/d1tb01430g.

Abstract

Vancomycin (Van) is a key antibiotic of choice for the treatment of systemic methicillin resistant (MRSA) infections. However, due to its poor membrane permeability, it is administered parenterally, adding to the cost and effort of treatment. The poor oral bioavailability of Van is mainly due to its physico-chemical properties that limit its paracellular and transcellular transport across gastrointestinal (GI) epithelium. Herein we report the development of silica nanoparticles (SNPs)-based formulations that are able to enhance the epithelial permeability of Van. We synthesized SNPs of different pore sizes (2 nm and 9 nm) and modified their surface charge and polarity by attaching different functional groups (-NH, -PO, and -CH). Van was loaded within these SNPs at a loading capacity in the range of 18-29 wt%. The Van-loaded SNPs exhibited a controlled release behaviour when compared to un-encapsulated Van which showed rapid release due to its hydrophilic nature. Among Van-loaded SNPs, SNPs with large pores showed a prolonged release compared to SNPs with small pores while SNPs functionalised with -CH groups exhibited a slowest release among the functionalised SNPs. Importantly, Van-loaded SNPs, especially the large pore SNPs with negative charge, enhanced the permeability of Van across an epithelial cell monolayer (Caco-2 cell model) by up to 6-fold, with values up to 1.716 × 10 cm s ( 0.304 × 10 cm s for un-encapsulated Van) after 3 h. The enhancement was dependent on both the type of SNPs and their surface functionalisation. The permeation enhancing effect of SNPs was due to its ability to transiently open the tight junctions measured by decrease in transepithelial resistance (TEER) which was reversible after 3 h. All in all, our data highlights the potential of SNPs (especially SNPs with large pores) for oral delivery of Van or other antimicrobial peptides.

摘要

万古霉素(Van)是治疗全身性耐甲氧西林金黄色葡萄球菌(MRSA)感染的关键抗生素选择。然而,由于其膜通透性差,只能通过肠外途径给药,增加了治疗的成本和难度。Van 的口服生物利用度差主要是由于其物理化学性质限制了其在胃肠道(GI)上皮细胞的旁细胞和跨细胞转运。本文报道了基于硅纳米颗粒(SNPs)的制剂的开发,这些制剂能够增强 Van 的上皮通透性。我们合成了不同孔径(2nm 和 9nm)的 SNPs,并通过附着不同的官能团(-NH、-PO 和 -CH)来修饰其表面电荷和极性。Van 的载药量在 18-29wt%的范围内。与未封装的 Van 相比,负载 Van 的 SNPs 表现出控释行为,Van 由于其亲水性而迅速释放。在负载 Van 的 SNPs 中,与小孔径 SNPs 相比,大孔径 SNPs 表现出更长的释放时间,而用 -CH 基团官能化的 SNPs 在官能化 SNPs 中表现出最慢的释放。重要的是,负载 Van 的 SNPs,特别是带负电荷的大孔径 SNPs,可将 Van 通过上皮细胞单层(Caco-2 细胞模型)的通透性提高 6 倍,在 3 小时后, 值高达 1.716×10cm/s(未封装的 Van 为 0.304×10cm/s)。这种增强作用取决于 SNPs 的类型及其表面官能化。SNP 的渗透增强作用是由于其能够暂时打开紧密连接,通过跨上皮电阻(TEER)的降低来测量,3 小时后 TEER 是可逆的。总之,我们的数据强调了 SNPs(特别是大孔径 SNPs)在口服递送 Van 或其他抗菌肽方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验