Suppr超能文献

肌肉骨骼创伤中人工智能的真实世界分析

Real-world analysis of artificial intelligence in musculoskeletal trauma.

作者信息

Ajmera Pranav, Kharat Amit, Botchu Rajesh, Gupta Harun, Kulkarni Viraj

机构信息

Department of Radiology, Dr D.Y. Patil Medical College, Hospital and Research Center, DPU, Pune, India.

Department of Musculoskeletal Radiology, Royal Orthopedic Hospital, Birmingham, UK.

出版信息

J Clin Orthop Trauma. 2021 Aug 27;22:101573. doi: 10.1016/j.jcot.2021.101573. eCollection 2021 Nov.

Abstract

Musculoskeletal trauma accounts for a large percentage of emergency room visits and is amongst the top causes of unscheduled patient visits to the emergency room. Musculoskeletal trauma results in expenditure of billions of dollars and protracted losses of quality-adjusted life years. New and innovative methods are needed to minimise the impact by ensuring quick and accurate assessment. However, each of the currently utilised radiological procedures, such as radiography, ultrasonography, computed tomography, and magnetic resonance imaging, has resulted in implosion of medical imaging data. Deep learning, a recent advancement in artificial intelligence, has demonstrated the potential to analyse medical images with sensitivity and specificity at par with experts. In this review article, we intend to summarise and showcase the various developments which have occurred in the dynamic field of artificial intelligence and machine learning and how their applicability to different aspects of imaging in trauma can be explored to improvise our existing reporting systems and improvise on patient outcomes.

摘要

肌肉骨骼创伤在急诊室就诊中占很大比例,是患者非计划前往急诊室就诊的主要原因之一。肌肉骨骼创伤造成了数十亿美元的支出以及质量调整生命年的长期损失。需要新的创新方法,通过确保快速准确的评估来尽量减少其影响。然而,目前使用的每种放射学检查方法,如X线摄影、超声检查、计算机断层扫描和磁共振成像,都导致了医学影像数据的爆炸式增长。深度学习是人工智能领域的一项最新进展,已显示出有潜力以与专家相当的敏感性和特异性来分析医学图像。在这篇综述文章中,我们打算总结并展示人工智能和机器学习动态领域中发生的各种进展,以及如何探索它们在创伤成像不同方面的适用性,以改进我们现有的报告系统并改善患者预后。

相似文献

1
Real-world analysis of artificial intelligence in musculoskeletal trauma.
J Clin Orthop Trauma. 2021 Aug 27;22:101573. doi: 10.1016/j.jcot.2021.101573. eCollection 2021 Nov.
2
Musculoskeletal trauma and artificial intelligence: current trends and projections.
Skeletal Radiol. 2022 Feb;51(2):257-269. doi: 10.1007/s00256-021-03824-6. Epub 2021 Jun 5.
4
Artificial intelligence applied to musculoskeletal oncology: a systematic review.
Skeletal Radiol. 2022 Feb;51(2):245-256. doi: 10.1007/s00256-021-03820-w. Epub 2021 May 19.
5
Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: Current applications.
J Clin Ultrasound. 2022 Nov;50(9):1414-1431. doi: 10.1002/jcu.23321. Epub 2022 Sep 7.
7
Scientific Advances and Technical Innovations in Musculoskeletal Radiology.
Invest Radiol. 2023 Jan 1;58(1):1-2. doi: 10.1097/RLI.0000000000000930. Epub 2022 Nov 23.
8
Application of artificial intelligence to imaging interpretations in the musculoskeletal area: Where are we? Where are we going?
Joint Bone Spine. 2023 Jan;90(1):105493. doi: 10.1016/j.jbspin.2022.105493. Epub 2022 Nov 21.
9
Reviewing the relationship between machines and radiology: the application of artificial intelligence.
Acta Radiol Open. 2021 Feb 9;10(2):2058460121990296. doi: 10.1177/2058460121990296. eCollection 2021 Feb.
10
Exploring the Role of Artificial Intelligence in an Emergency and Trauma Radiology Department.
Can Assoc Radiol J. 2021 Feb;72(1):167-174. doi: 10.1177/0846537120918338. Epub 2020 Apr 20.

引用本文的文献

1
2
Role of Artificial Intelligence in Musculoskeletal Interventions.
Cancers (Basel). 2025 May 10;17(10):1615. doi: 10.3390/cancers17101615.
4
Influencing factors for delayed diagnosed injuries in multiple trauma patients - introducing the 'Risk for Delayed Diagnoses Score' (RIDD-Score).
Eur J Trauma Emerg Surg. 2024 Oct;50(5):2199-2207. doi: 10.1007/s00068-024-02571-2. Epub 2024 Jun 26.
6
Osteoporosis management-current and future perspectives - A systemic review.
J Orthop. 2024 Mar 2;53:101-113. doi: 10.1016/j.jor.2024.03.002. eCollection 2024 Jul.
7
A review on artificial intelligence for the diagnosis of fractures in facial trauma imaging.
Front Artif Intell. 2024 Jan 5;6:1278529. doi: 10.3389/frai.2023.1278529. eCollection 2023.
8
Artificial Intelligence in Orthopedic Radiography Analysis: A Narrative Review.
Diagnostics (Basel). 2022 Sep 16;12(9):2235. doi: 10.3390/diagnostics12092235.

本文引用的文献

1
Artificial Intelligence for Healthcare in Africa.
Front Digit Health. 2020 Jul 7;2:6. doi: 10.3389/fdgth.2020.00006. eCollection 2020.
2
Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies.
Radiol Artif Intell. 2021 Jan 20;3(3):e200165. doi: 10.1148/ryai.2021200165. eCollection 2021 May.
3
Clinical applications of AI in MSK imaging: a liability perspective.
Skeletal Radiol. 2022 Feb;51(2):235-238. doi: 10.1007/s00256-021-03782-z. Epub 2021 Apr 9.
5
Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines.
Front Big Data. 2018 Nov 19;1:6. doi: 10.3389/fdata.2018.00006. eCollection 2018.
6
7
A fully automated rib fracture detection system on chest CT images and its impact on radiologist performance.
Skeletal Radiol. 2021 Sep;50(9):1821-1828. doi: 10.1007/s00256-021-03709-8. Epub 2021 Feb 18.
8
MaskedFace-Net - A dataset of correctly/incorrectly masked face images in the context of COVID-19.
Smart Health (Amst). 2021 Mar;19:100144. doi: 10.1016/j.smhl.2020.100144. Epub 2020 Nov 28.
9
Application of deep learning algorithm to detect and visualize vertebral fractures on plain frontal radiographs.
PLoS One. 2021 Jan 28;16(1):e0245992. doi: 10.1371/journal.pone.0245992. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验