Chen Hsuan-Yu, Hsu Benny Wei-Yun, Yin Yu-Kai, Lin Feng-Huei, Yang Tsung-Han, Yang Rong-Sen, Lee Chih-Kuo, Tseng Vincent S
Institute of Biomedical Engineering, National Taiwan University, Taipei City, Taiwan.
Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
PLoS One. 2021 Jan 28;16(1):e0245992. doi: 10.1371/journal.pone.0245992. eCollection 2021.
Identification of vertebral fractures (VFs) is critical for effective secondary fracture prevention owing to their association with the increasing risks of future fractures. Plain abdominal frontal radiographs (PARs) are a common investigation method performed for a variety of clinical indications and provide an ideal platform for the opportunistic identification of VF. This study uses a deep convolutional neural network (DCNN) to identify the feasibility for the screening, detection, and localization of VFs using PARs.
A DCNN was pretrained using ImageNet and retrained with 1306 images from the PARs database obtained between August 2015 and December 2018. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were evaluated. The visualization algorithm gradient-weighted class activation mapping (Grad-CAM) was used for model interpretation.
Only 46.6% (204/438) of the VFs were diagnosed in the original PARs reports. The algorithm achieved 73.59% accuracy, 73.81% sensitivity, 73.02% specificity, and an AUC of 0.72 in the VF identification.
Computer driven solutions integrated with the DCNN have the potential to identify VFs with good accuracy when used opportunistically on PARs taken for a variety of clinical purposes. The proposed model can help clinicians become more efficient and economical in the current clinical pathway of fragile fracture treatment.
由于椎体骨折(VFs)与未来骨折风险增加相关,因此对其进行识别对于有效的二级骨折预防至关重要。腹部正位平片(PARs)是一种常见的检查方法,用于多种临床指征,并为机会性识别椎体骨折提供了理想平台。本研究使用深度卷积神经网络(DCNN)来确定利用PARs进行椎体骨折筛查、检测和定位的可行性。
使用ImageNet对DCNN进行预训练,并使用2015年8月至2018年12月期间从PARs数据库获取的1306张图像进行再训练。评估了准确率、敏感性、特异性和受试者操作特征曲线下面积(AUC)。使用可视化算法梯度加权类激活映射(Grad-CAM)进行模型解释。
在原始PARs报告中仅诊断出46.6%(204/438)的椎体骨折。该算法在椎体骨折识别中实现了73.59%的准确率、73.81%的敏感性、73.02%的特异性和0.72的AUC。
与DCNN集成的计算机驱动解决方案在对用于各种临床目的的PARs进行机会性使用时,有可能以较高的准确率识别椎体骨折。所提出的模型可以帮助临床医生在当前脆性骨折治疗的临床路径中提高效率并节省成本。