Suppr超能文献

概率边界分析:一种用于量化决策分析建模和成本效益分析中参数不确定性的新方法。

Probability bound analysis: A novel approach for quantifying parameter uncertainty in decision-analytic modeling and cost-effectiveness analysis.

机构信息

Center of Excellence in Decision-Analytic Modeling and Health Economics Research, Swiss Institute for Translational and Entrepreneurial Medicine (sitem-insel), Bern, Switzerland.

Department of Health Services, Policy, & Practice, Brown University, Providence, Rhode Island, USA.

出版信息

Stat Med. 2021 Dec 20;40(29):6501-6522. doi: 10.1002/sim.9195. Epub 2021 Sep 15.

Abstract

Decisions about health interventions are often made using limited evidence. Mathematical models used to inform such decisions often include uncertainty analysis to account for the effect of uncertainty in the current evidence base on decision-relevant quantities. However, current uncertainty quantification methodologies, including probabilistic sensitivity analysis (PSA), require modelers to specify a precise probability distribution to represent the uncertainty of a model parameter. This study introduces a novel approach for representing and propagating parameter uncertainty, probability bounds analysis (PBA), where the uncertainty about the unknown probability distribution of a model parameter is expressed in terms of an interval bounded by lower and upper bounds on the unknown cumulative distribution function (p-box) and without assuming a particular form of the distribution function. We give the formulas of the p-boxes for common situations (given combinations of data on minimum, maximum, median, mean, or standard deviation), describe an approach to propagate p-boxes into a black-box mathematical model, and introduce an approach for decision-making based on the results of PBA. We demonstrate the characteristics and utility of PBA vs PSA using two case studies. In sum, this study provides modelers with practical tools to conduct parameter uncertainty quantification given the constraints of available data and with the fewest assumptions.

摘要

健康干预措施的决策通常是基于有限的证据做出的。用于为这些决策提供信息的数学模型通常包括不确定性分析,以说明当前证据基础上不确定性对决策相关数量的影响。然而,目前的不确定性量化方法,包括概率敏感性分析(PSA),要求建模人员指定一个精确的概率分布来表示模型参数的不确定性。本研究介绍了一种表示和传播参数不确定性的新方法,即概率界限分析(PBA),其中模型参数未知概率分布的不确定性用未知累积分布函数(p-box)的下限和上限之间的区间来表示,而不假设分布函数的特定形式。我们给出了常见情况下(给定最小、最大、中位数、平均值或标准差的数据组合)的 p-box 公式,描述了一种将 p-box 传播到黑盒数学模型的方法,并介绍了一种基于 PBA 结果进行决策的方法。我们使用两个案例研究来展示 PBA 与 PSA 的特点和实用性。总之,本研究为建模人员提供了实用的工具,以便在可用数据的限制下并尽可能少的假设条件下进行参数不确定性量化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43ac/9290849/92b20be58291/SIM-40-6501-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验