Suppr超能文献

氢基超导体中电子键合网络与临界温度之间的强相关性。

Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors.

作者信息

Belli Francesco, Novoa Trinidad, Contreras-García J, Errea Ion

机构信息

Centro de Física de Materiales (CSIC-UPV/EHU), Donostia/San Sebastián, Spain.

Fisika Aplikatua Saila, Gipuzkoako Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Donostia/San Sebastián, Spain.

出版信息

Nat Commun. 2021 Sep 16;12(1):5381. doi: 10.1038/s41467-021-25687-0.

Abstract

By analyzing structural and electronic properties of more than a hundred predicted hydrogen-based superconductors, we determine that the capacity of creating an electronic bonding network between localized units is key to enhance the critical temperature in hydrogen-based superconductors. We define a magnitude named as the networking value, which correlates with the predicted critical temperature better than any other descriptor analyzed thus far. By classifying the studied compounds according to their bonding nature, we observe that such correlation is bonding-type independent, showing a broad scope and generality. Furthermore, combining the networking value with the hydrogen fraction in the system and the hydrogen contribution to the density of states at the Fermi level, we can predict the critical temperature of hydrogen-based compounds with an accuracy of about 60 K. Such correlation is useful to screen new superconducting compounds and offers a deeper understating of the chemical and physical properties of hydrogen-based superconductors, while setting clear paths for chemically engineering their critical temperatures.

摘要

通过分析一百多种预测的氢基超导体的结构和电子特性,我们确定在局域单元之间创建电子键合网络的能力是提高氢基超导体临界温度的关键。我们定义了一个名为网络值的量,它与预测的临界温度的相关性比迄今为止分析的任何其他描述符都要好。通过根据所研究化合物的键合性质对其进行分类,我们观察到这种相关性与键合类型无关,具有广泛的范围和普遍性。此外,将网络值与系统中的氢分数以及氢对费米能级态密度的贡献相结合,我们可以以约60 K的精度预测氢基化合物的临界温度。这种相关性有助于筛选新的超导化合物,并能更深入地理解氢基超导体的化学和物理性质,同时为通过化学方法调控其临界温度指明了明确的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc0b/8446067/d5fcb45af682/41467_2021_25687_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验