Wang Jimin, Maschietto Federica, Guberman-Pfeffer Matthew J, Reiss Krystle, Allen Brandon, Xiong Yong, Lolis Elias, Batista Victor S
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, United States.
Department of Chemistry, Yale University, New Haven, CT 06511-8499, United States.
Comput Struct Biotechnol J. 2021;19:5019-5028. doi: 10.1016/j.csbj.2021.08.053. Epub 2021 Sep 3.
The membrane fusion mechanism of SARS-CoV-2 offers an attractive target for the development of small molecule antiviral inhibitors. Fusion involves an initial binding of the crown-like trimeric spike glycoproteins of SARS-CoV-2 to the receptor angiotensin II-converting enzyme 2 (ACE2) on the permissive host cellular membrane and a prefusion to post-fusion conversion of the spike trimer. During this conversion, the fusion peptides of the spike trimer are inserted into the host membrane to bring together the host and viral membranes for membrane fusion in highly choreographic events. However, geometric constraints due to interactions with the membranes remain poorly understood. In this study, we build structural models of super-complexes of spike trimer/ACE2 dimers based on the molecular structures of the ACE2/neutral amino acid transporter B(0)AT heterodimer. We determine the conformational constraints due to the membrane geometry on the enzymatic activity of ACE2 and on the viral fusion process. Furthermore, we find that binding three ACE2 dimers per spike trimer is essential to open the central pore as necessary for triggering productive membrane fusion through an elongation of the central stalk. The reported findings thus provide valuable insights for targeting the membrane fusion mechanism for drug design at the molecular level.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的膜融合机制为小分子抗病毒抑制剂的开发提供了一个有吸引力的靶点。融合过程包括SARS-CoV-2的冠状三聚体刺突糖蛋白首先与易感宿主细胞膜上的受体血管紧张素II转换酶2(ACE2)结合,以及刺突三聚体从预融合状态到后融合状态的转变。在这个转变过程中,刺突三聚体的融合肽插入宿主膜,使宿主膜和病毒膜聚集在一起,在高度协调的过程中实现膜融合。然而,由于与膜相互作用产生的几何约束仍知之甚少。在本研究中,我们基于ACE2/中性氨基酸转运体B(0)AT异二聚体的分子结构构建了刺突三聚体/ACE2二聚体超复合物的结构模型。我们确定了膜几何结构对ACE2酶活性和病毒融合过程的构象约束。此外,我们发现每个刺突三聚体结合三个ACE2二聚体对于打开中心孔至关重要,而中心孔的打开是通过中心茎的伸长触发有效膜融合所必需的。因此,本研究结果为在分子水平上针对膜融合机制进行药物设计提供了有价值的见解。