Suppr超能文献

全球大流行期间推特上关于新冠病毒病的健康相关信息的准确性。

Accuracy of health-related information regarding COVID-19 on Twitter during a global pandemic.

作者信息

Swetland Sarah B, Rothrock Ava N, Andris Halle, Davis Bennett, Nguyen Linh, Davis Phil, Rothrock Steven G

机构信息

University of Florida Gainesville Florida USA.

Duke University Durham North Carolina USA.

出版信息

World Med Health Policy. 2021 Sep;13(3):503-517. doi: 10.1002/wmh3.468. Epub 2021 Jul 29.

Abstract

This study was performed to analyze the accuracy of health-related information on Twitter during the coronavirus disease 2019 (COVID-19) pandemic. Authors queried Twitter on three dates for information regarding COVID-19 and five terms (cure, emergency or emergency room, prevent or prevention, treat or treatments, vitamins or supplements) assessing the first 25 results with health-related information. Tweets were authoritative if written by governments, hospitals, or physicians. Two physicians assessed each tweet for accuracy. Metrics were compared between accurate and inaccurate tweets using analysis and Mann-Whitney . A total of 25.4% of tweets were inaccurate. Accurate tweets were more likely written by Twitter authenticated authors (49.8% vs. 20.9%, 28.9% difference, 95% confidence interval [CI]: 17.7-38.2) with accurate tweet authors having more followers (19,491 vs. 7346; 3446 difference, 95% CI: 234-14,054) versus inaccurate tweet authors. Likes, retweets, tweet length, botometer scores, writing grade level, and rank order did not differ between accurate and inaccurate tweets. We found 1/4 of health-related COVID-19 tweets inaccurate indicating that the public should not rely on COVID-19 health information written on Twitter. Ideally, improved government regulatory authority, public/private industry oversight, independent fact-checking, and artificial intelligence algorithms are needed to ensure inaccurate information on Twitter is removed.

摘要

本研究旨在分析2019年冠状病毒病(COVID-19)大流行期间推特上与健康相关信息的准确性。作者在三个日期查询推特,获取有关COVID-19的信息以及五个术语(治愈、急诊或急诊室、预防、治疗、维生素或补充剂),评估前25条与健康相关的结果。如果推文由政府、医院或医生撰写,则具有权威性。两名医生评估每条推文的准确性。使用分析和曼-惠特尼检验比较准确和不准确推文之间的指标。共有25.4%的推文不准确。准确的推文更有可能由推特认证作者撰写(49.8%对20.9%,差异28.9%,95%置信区间[CI]:17.7 - 38.2),准确推文的作者比不准确推文的作者拥有更多粉丝(19491对7346;差异3446,95%CI:234 - 14054)。准确和不准确推文在点赞数、转发数、推文长度、机器人检测分数、写作年级水平和排名顺序方面没有差异。我们发现四分之一与COVID-19健康相关的推文不准确,这表明公众不应依赖推特上撰写的COVID-19健康信息。理想情况下,需要加强政府监管机构、公共/私营行业监督、独立事实核查和人工智能算法,以确保推特上的不准确信息被删除。

相似文献

8
Content Analysis of Idiopathic Pulmonary Fibrosis-related Information on Twitter.推特上特发性肺纤维化相关信息的内容分析
ATS Sch. 2022 Nov 15;3(4):576-587. doi: 10.34197/ats-scholar.2022-0054OC. eCollection 2022 Dec.

引用本文的文献

6
Guidance to best tools and practices for systematic reviews.系统评价最佳工具和实践指南。
BMC Infect Dis. 2023 Jun 8;23(1):383. doi: 10.1186/s12879-023-08304-x.

本文引用的文献

3
The COVID-19 social media infodemic.新冠病毒肺炎疫情相关社交媒体信息疫情。
Sci Rep. 2020 Oct 6;10(1):16598. doi: 10.1038/s41598-020-73510-5.
10
Classifying and Summarizing Information from Microblogs During Epidemics.疫情期间微博信息的分类与总结
Inf Syst Front. 2018;20(5):933-948. doi: 10.1007/s10796-018-9844-9. Epub 2018 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验