Suppr超能文献

新冠疫情对城市规模交通与安全的影响:来自底特律的早期经验

Impact of COVID-19 on city-scale transportation and safety: An early experience from Detroit.

作者信息

Yao Yongtao, Geara Tony G, Shi Weisong

机构信息

Department of Computer Science, Wayne State University, Detroit, Ml, 48202, USA.

Department of Public Works, City of Detroit, Detroit, Ml, 48216, USA.

出版信息

Smart Health (Amst). 2021 Nov;22:100218. doi: 10.1016/j.smhl.2021.100218. Epub 2021 Sep 14.

Abstract

The COVID-19 pandemic brought unprecedented levels of disruption to the local and regional transportation networks throughout the United States, especially the Motor City---Detroit. That was mainly a result of swift restrictive measures such as statewide quarantine and lock-down orders to confine the spread of the virus and the rising number of COVID-19 confirmed cases and deaths. This work is driven by analyzing five types of real-world data sets from Detroit related to traffic volume, daily cases, weather, social distancing index, and crashes from January 2019 to June 2020. The primary goals of this work are: i) figuring out the impacts of COVID-19 on the transportation network usage (traffic volume) and safety (crashes) for the City of Detroit, ii) determining whether each type of data (e.g. traffic volume data) could be a useful factor in the confirmed-cases prediction, and iii) providing an early future prediction method for COVID-19 rates, which can be a vital contributor to life-saving advanced preventative and preparatory responses. In addressing these problems, the prediction results of six feature groups are presented and analyzed to quantify the prediction effectiveness of each type of data. Then, a deep learning model was developed using long short-term memory networks to predict the number of confirmed cases within the next week. The model demonstrated a promising prediction result with a coefficient of determination ( ) of up to approximately 0.91. Furthermore, six essential observations with supporting evidence are presented, which will be helpful for decision-makers to take specific measures that aid in preventing the spread of COVID-19 and protecting public health and safety. The proposed approaches could be applied, customized, adjusted, and replicated for analysis of the impact of COVID-19 on a transportation network and prediction of the anticipated COVID-19 cases using a similar data set obtained for other large cities in the USA or from around the world.

摘要

新冠疫情给美国各地的地方和区域交通网络带来了前所未有的破坏,尤其是汽车城——底特律。这主要是由于迅速采取的限制措施,如全州范围的隔离和封锁令,以遏制病毒传播,以及新冠确诊病例和死亡人数的不断上升。这项工作是通过分析2019年1月至2020年6月来自底特律的五类真实世界数据集来推动的,这些数据集与交通流量、每日病例、天气、社交距离指数和交通事故有关。这项工作的主要目标是:i)弄清楚新冠疫情对底特律市交通网络使用情况(交通流量)和安全状况(交通事故)的影响;ii)确定每种类型的数据(如交通流量数据)是否可能是确诊病例预测中的一个有用因素;iii)提供一种新冠疫情感染率的早期预测方法,这可能是挽救生命的先进预防和准备应对措施的一个重要贡献因素。在解决这些问题时,展示并分析了六个特征组的预测结果,以量化每种类型数据的预测有效性。然后,使用长短期记忆网络开发了一个深度学习模型,以预测未来一周内的确诊病例数。该模型展示了一个很有前景的预测结果,决定系数( )高达约0.91。此外,还提出了六项有支持证据的重要观察结果,这将有助于决策者采取具体措施,以帮助预防新冠疫情传播,保护公众健康和安全。所提出的方法可以应用、定制、调整和复制,用于分析新冠疫情对交通网络的影响,并使用从美国其他大城市或世界各地获得的类似数据集预测预期的新冠病例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fda/8438802/0cb62790150b/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验