Suppr超能文献

通过将 CT 严重程度评分与 NEWS、qSOFA 或外周灌注指数相结合预测 COVID-19 患者的死亡率。

Prediction of mortality in COVID-19 through combing CT severity score with NEWS, qSOFA, or peripheral perfusion index.

机构信息

Department of Emergency Medicine, Faculty of Medicine, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey.

Department of Emergency Medicine, Faculty of Medicine, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey.

出版信息

Am J Emerg Med. 2021 Dec;50:546-552. doi: 10.1016/j.ajem.2021.08.079. Epub 2021 Sep 2.

Abstract

INTRODUCTION

The assessment of disease severity and the prediction of clinical outcomes at early disease stages can contribute to decreased mortality in patients with Coronavirus disease 2019 (COVID-19). This study was conducted to develop and validate a multivariable risk prediction model for mortality with using a combination of computed tomography severity score (CT-SS), national early warning score (NEWS), and quick sequential (sepsis-related) organ failure assessment (qSOFA) in COVID-19 patients.

METHODS

We retrospectively collected medical data from 655 adult COVID-19 patients admitted to our hospital between July and November 2020. Data on demographics, clinical characteristics, and laboratory and radiological findings measured as part of standard care at admission were used to calculate NEWS, qSOFA score, CT-SS, peripheral perfusion index (PPI) and shock index (SI). Logistic regression and Cox proportional hazard models were used to predict mortality, which was our primary outcome. The predictive accuracy of distinct scoring systems was evaluated by the receiver-operating characteristic (ROC) curve analysis.

RESULTS

The median age was 50.0 years [333 males (50.8%), 322 females (49.2%)]. Higher NEWS and SI was associated with time-to-death within 90-days, whereas higher age, CT-SS and lower PPI were significantly associated with time-to-death within both 14 days and 90 days in the adjusted Cox regression model. The CT-SS predicted different mortality risk levels within each stratum of NEWS and qSOFA and improved the discrimination of mortality prediction models. Combining CT-SS with NEWS score yielded more accurate 14 days (DBA: -0.048, p = 0.002) and 90 days (DBA: -0.066, p < 0.001) mortality prediction.

CONCLUSION

Combining severity tools such as CT-SS, NEWS and qSOFA improves the accuracy of predicting mortality in patients with COVID-19. Inclusion of these tools in decision strategies might provide early detection of high-risk groups, avoid delayed medical attention, and improve patient outcomes.

摘要

简介

在疾病早期阶段评估疾病严重程度并预测临床结局有助于降低 2019 年冠状病毒病(COVID-19)患者的死亡率。本研究旨在开发和验证一种多变量风险预测模型,该模型使用计算机断层扫描严重程度评分(CT-SS)、国家早期预警评分(NEWS)和快速序贯(脓毒症相关)器官衰竭评估(qSOFA)的组合,对 COVID-19 患者的死亡率进行预测。

方法

我们回顾性地收集了 2020 年 7 月至 11 月期间我院收治的 655 例成年 COVID-19 患者的医疗数据。使用入院时作为标准护理一部分测量的人口统计学、临床特征和实验室及影像学检查数据,计算 NEWS、qSOFA 评分、CT-SS、外周灌注指数(PPI)和休克指数(SI)。使用逻辑回归和 Cox 比例风险模型预测死亡率,这是我们的主要结局。通过接受者操作特征(ROC)曲线分析评估不同评分系统的预测准确性。

结果

中位年龄为 50.0 岁[333 名男性(50.8%),322 名女性(49.2%)]。较高的 NEWS 和 SI 与 90 天内死亡时间有关,而年龄较大、CT-SS 较低和 PPI 较低与调整后的 Cox 回归模型中 14 天和 90 天内的死亡时间显著相关。CT-SS 预测了 NEWS 和 qSOFA 各分层内不同的死亡率风险水平,并提高了死亡率预测模型的区分度。将 CT-SS 与 NEWS 评分相结合,可更准确地预测 14 天(DBA:-0.048,p=0.002)和 90 天(DBA:-0.066,p<0.001)的死亡率。

结论

将 CT-SS、NEWS 和 qSOFA 等严重程度工具相结合,可以提高 COVID-19 患者死亡率预测的准确性。将这些工具纳入决策策略中,可能有助于早期发现高危人群,避免医疗延误,并改善患者预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验