Singh Mallika, Pahl Eleanor, Wang Shangxian, Carass Aaron, Lee Junghoon, Prince Jerry L
Dept. of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218.
Dept. of Aerospace Engineering, Embry-Riddle Aeronautical University (ERAU), Prescott, AZ 86301.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11596. doi: 10.1117/12.2582264. Epub 2021 Feb 15.
Total intracranial volume (TIV) is the volume enclosed inside the cranium, inclusive of the meninges and the brain. TIV is extensively used to correct variations in inter-subject head size for the evaluation of neurodegenerative diseases. In this work, we present an automatic method to generate a TIV mask from MR images while synthesizing a CT image to be used in subsequent analysis. In addition, we propose an alternative way to obtain ground truth TIV masks using a semi-manual approach, which results in significant time savings. We train a conditional generative adversarial network (cGAN) using 2D MR slices to realize our tasks. The quantitative evaluation showed that the model was able to synthesize CT and generate TIV masks that closely approximate the reference images. This study also provides a comparison of the described method against skull stripping tools that output a mask enclosing the cranial volume, using MRI scan. In particular, highlighting the deficiencies in using such tools to approximate the volume using MRI scan.
总颅内体积(TIV)是指颅腔内包含脑膜和脑的体积。TIV被广泛用于校正个体间头部大小差异,以评估神经退行性疾病。在这项工作中,我们提出了一种自动方法,可从磁共振成像(MR)图像生成TIV掩码,同时合成用于后续分析的计算机断层扫描(CT)图像。此外,我们提出了一种使用半自动方法获取真实TIV掩码的替代方法,这可显著节省时间。我们使用二维MR切片训练条件生成对抗网络(cGAN)以实现我们的任务。定量评估表明,该模型能够合成CT并生成与参考图像非常接近的TIV掩码。本研究还将所描述的方法与使用MRI扫描输出包围颅腔体积掩码的颅骨剥离工具进行了比较。特别是,突出了使用此类工具通过MRI扫描近似体积时的不足之处。