Suppr超能文献

固定效应模型和随机效应模型。

Fixed- and Random-Effects Models.

机构信息

School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.

RainCity Analytics, Vancouver, BC, Canada.

出版信息

Methods Mol Biol. 2022;2345:41-65. doi: 10.1007/978-1-0716-1566-9_3.

Abstract

Deciding whether to use a fixed-effect model or a random-effects model is a primary decision an analyst must make when combining the results from multiple studies through meta-analysis. Both modeling approaches estimate a single effect size of interest. The fixed-effect meta-analysis assumes that all studies share a single common effect and, as a result, all of the variance in observed effect sizes is attributable to sampling error. The random-effects meta-analysis estimates the mean of a distribution of effects, thus assuming that study effect sizes vary from one study to the next. Under this model, variance in observed effect sizes is attributable to both sampling error (within-study variance) and statistical heterogeneity (between-study variance).The most popular meta-analyses involve using a weighted average to combine the study-level effect sizes. Both fixed- and random-effects models use an inverse-variance weight (variance of the observed effect size). However, given the shared between-study variance used in the random-effects model, it leads to a more balanced distribution of weights than under the fixed-effect model (i.e., small studies are given more relative weight and large studies less). The standard error for these estimators also relates to the inverse-variance weights. As such, the standard errors and confidence intervals for the random-effects model are larger and wider than in the fixed-effect analysis. Indeed, in the presence of statistical heterogeneity, fixed-effect models can lead to overly narrow intervals.In addition to commonly used, generalizable models, there are additional fixed-effect models and random-effect models that can be considered. Additional fixed-effect models that are specific to dichotomous data are more robust to issues that arise from sparse data. Furthermore, random-effects models can be expanded upon using generalized linear mixed models so that different covariance structures are used to distribute statistical heterogeneity across multiple parameters. Finally, both fixed- and random-effects modeling can be conducted using a Bayesian framework.

摘要

确定使用固定效应模型还是随机效应模型是分析人员在通过荟萃分析合并多项研究结果时必须做出的主要决策。这两种建模方法都估计了一个单一的感兴趣的效应量。固定效应荟萃分析假设所有研究都有一个单一的共同效应,因此,观察到的效应量的所有差异都归因于抽样误差。随机效应荟萃分析估计了一个效应分布的平均值,因此假设研究效应量在不同的研究之间有所不同。在这个模型下,观察到的效应量的差异归因于抽样误差(研究内方差)和统计异质性(研究间方差)。最受欢迎的荟萃分析涉及使用加权平均值来合并研究水平的效应量。固定效应和随机效应模型都使用逆方差权重(观察到的效应量的方差)。然而,鉴于随机效应模型中使用的共同研究间方差,它导致权重的分布比固定效应模型更平衡(即,小研究给予更多的相对权重,大研究给予较少的相对权重)。这些估计量的标准误差也与逆方差权重有关。因此,随机效应模型的标准误差和置信区间大于固定效应分析。事实上,在存在统计异质性的情况下,固定效应模型可能会导致区间过于狭窄。除了常用的可推广模型外,还可以考虑其他固定效应模型和随机效应模型。特定于二项数据的附加固定效应模型对由稀疏数据引起的问题更稳健。此外,可以使用广义线性混合模型扩展随机效应模型,以便使用不同的协方差结构在多个参数上分布统计异质性。最后,固定效应和随机效应建模都可以使用贝叶斯框架进行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验