St. Michael's Hospital-Unity Health Toronto, Toronto, ON, Canada.
Department of Medicine, University of Toronto, Toronto, ON, Canada.
Methods Mol Biol. 2022;2345:187-201. doi: 10.1007/978-1-0716-1566-9_12.
There are often multiple potential interventions to treat a disease; therefore, we need a method for simultaneously comparing and ranking all of these available interventions. In contrast to pairwise meta-analysis, which allows for the comparison of one intervention to another based on head-to-head data from randomized trials, network meta-analysis (NMA) facilitates simultaneous comparison of the efficacy or safety of multiple interventions that may not have been directly compared in a randomized trial. NMAs help researchers study important and previously unanswerable questions, which have contributed to a rapid rise in the number of NMA publications in the biomedical literature. However, the conduct and interpretation of NMAs are more complex than pairwise meta-analyses: there are additional NMA model assumptions (i.e., network connectivity, homogeneity, transitivity, and consistency) and outputs (e.g., network plots and surface under the cumulative ranking curves [SUCRAs]). In this chapter, we will: (1) explore similarities and differences between pairwise and network meta-analysis; (2) explain the differences between direct, indirect, and mixed treatment comparisons; (3) describe how treatment effects are derived from NMA models; (4) discuss key criteria predicating completion of NMA; (5) interpret NMA outputs; (6) discuss areas of ongoing methodological research in NMA; (7) outline an approach to conducting a systematic review and NMA; (8) describe common problems that researchers encounter when conducting NMAs and potential solutions; and (9) outline an approach to critically appraising a systematic review and NMA.
通常有多种潜在的干预措施来治疗一种疾病;因此,我们需要一种方法来同时比较和排列所有这些可用的干预措施。与仅允许根据随机试验的头对头数据比较一种干预措施与另一种干预措施的成对荟萃分析不同,网络荟萃分析(NMA)有助于同时比较可能没有在随机试验中直接比较的多种干预措施的疗效或安全性。NMA 帮助研究人员研究重要且以前无法回答的问题,这导致生物医学文献中 NMA 出版物的数量迅速增加。然而,NMA 的实施和解释比成对荟萃分析更为复杂:存在额外的 NMA 模型假设(即网络连通性、同质性、传递性和一致性)和输出(例如,网络图和累积排序曲线下面积 [SUCRA])。在本章中,我们将:(1)探讨成对荟萃分析和网络荟萃分析之间的异同;(2)解释直接、间接和混合治疗比较之间的区别;(3)描述如何从 NMA 模型得出治疗效果;(4)讨论完成 NMA 的关键标准;(5)解释 NMA 的输出;(6)讨论 NMA 中正在进行的方法学研究领域;(7)概述进行系统评价和 NMA 的方法;(8)描述研究人员在进行 NMA 时遇到的常见问题和潜在解决方案;(9)概述批判性评估系统评价和 NMA 的方法。