Suppr超能文献

干粘附状态下的微尺度光热机械驱动

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime.

作者信息

Tang Weiwei, Lyu Wei, Lu Jinsheng, Liu Fengjiang, Wang Jiyong, Yan Wei, Qiu Min

机构信息

Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.

Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.

出版信息

Light Sci Appl. 2021 Sep 22;10(1):193. doi: 10.1038/s41377-021-00622-6.

Abstract

Realizing optical manipulation of microscopic objects is crucial in the research fields of life science, condensed matter physics, and physical chemistry. In non-liquid environments, this task is commonly regarded as difficult due to strong adhesive surface force (µN) attached to solid interfaces that makes tiny optical driven force (pN) insignificant. Here, by recognizing the microscopic interaction mechanism between friction force-the parallel component of surface force on a contact surface-and thermoelastic waves induced by pulsed optical absorption, we establish a general principle enabling the actuation of micro-objects on dry frictional surfaces based on the opto-thermo-mechanical effects. Theoretically, we predict that nanosecond pulsed optical absorption with mW-scale peak power is sufficient to tame µN-scale friction force. Experimentally, we demonstrate the two-dimensional spiral motion of gold plates on micro-fibers driven by nanosecond laser pulses, and reveal the rules of motion control. Our results pave the way for the future development of micro-scale actuators in non-liquid environments.

摘要

实现对微观物体的光学操控在生命科学、凝聚态物理和物理化学等研究领域至关重要。在非液体环境中,由于附着在固体界面上的强大粘附表面力(约为微牛),使得微小的光驱动力(约为皮牛)显得微不足道,因此这项任务通常被认为很困难。在此,通过认识到摩擦力(接触表面上表面力的平行分量)与脉冲光吸收所诱导的热弹性波之间的微观相互作用机制,我们基于光热机械效应建立了一种能在干摩擦表面上驱动微物体的通用原理。从理论上讲,我们预测峰值功率为毫瓦级的纳秒脉冲光吸收足以驯服微牛级的摩擦力。通过实验,我们展示了由纳秒激光脉冲驱动的金板在微纤维上的二维螺旋运动,并揭示了运动控制规则。我们的研究结果为非液体环境中微尺度致动器的未来发展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4d/8458461/dac941b9f8d4/41377_2021_622_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验