Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
ACS Nano. 2022 Jun 28;16(6):8820-8826. doi: 10.1021/acsnano.1c09800. Epub 2022 May 20.
Motors that can convert different forms of energy into mechanical work are of profound importance to the development of human societies. The evolution of micromotors has stimulated many advances in drug delivery and microrobotics for futuristic applications in biomedical engineering and nanotechnology. However, further miniaturization of motors toward the nanoscale is still challenging because of the strong Brownian motion of nanomotors in liquid environments. Here, we develop light-driven opto-thermocapillary nanomotors (OTNM) operated on solid substrates where the interference of Brownian motion is effectively suppressed. Specifically, by optically controlling particle-substrate interactions and thermocapillary actuation, we demonstrate the robust orbital rotation of 80 nm gold nanoparticles around a laser beam on a solid substrate. With on-chip operation capability in an ambient environment, our OTNM can serve as light-driven engines to power functional devices at the nanoscale.
能够将不同形式的能量转化为机械功的马达对人类社会的发展具有深远的意义。微马达的发展激发了药物输送和微型机器人技术的许多进步,为未来生物医学工程和纳米技术中的应用提供了可能性。然而,由于纳米马达在液体环境中的强布朗运动,朝着纳米尺度进一步微型化仍然具有挑战性。在这里,我们开发了在固体基底上运行的光驱动光热毛细纳米马达(OTNM),其中有效地抑制了布朗运动的干扰。具体来说,通过光控制颗粒-基底相互作用和热毛细驱动,我们在固体基底上演示了激光束周围 80nm 金纳米粒子的稳定轨道旋转。我们的 OTNM 具有在环境中进行片上操作的能力,可以作为光驱动发动机,为纳米尺度的功能器件提供动力。