Suppr超能文献

严重创伤患者的临床决策支持:基于机器学习的失血性休克和创伤性脑损伤护理包定义。

Clinical decision support for severe trauma patients: Machine learning based definition of a bundle of care for hemorrhagic shock and traumatic brain injury.

机构信息

From the Department of Anesthesia and Critical Care Medicine, APHP Hopital Européen Georges Pompidou (E.L., A.N., G.F., S.H.); Department of Anesthesia and Critical Care Medicine, Hôpital Beaujon (P.S.A.), Clichy; Department of Anesthesia and Critical Care Medicine, Hia Sainte Anne (P.E.); Department of Anesthesia and Critical Care Medicine, Chu De Toulouse (T.G.), Toulouse; Department of Anesthesia and Critical Care Medicine, Chu De Bicêtre (A.H.), Le Kremlin Bicêtre France; Department of Anesthesia and Critical Care Medicine, Chu De Caen (J.-L.H.), Caen; Department of Anesthesia and Critical Care Medicine, Chu Lille (E.K.), Lille; Department of Anesthesia and Critical Care Medicine, Hopital Nord (M.L.), Marseille; Department of Anesthesia and Critical Care Medicine, Chu De Reims (V.L.), Reims; Department of Anesthesia and Critical Care Medicine, Chr Metz Thionville (N.M.), Metz; Department of Anesthesia and Critical Care Medicine, Chu Strasbourg (J.P.), Strasbourg, France; Department of Anesthesia and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center (R.P.), San Francisco, California.

出版信息

J Trauma Acute Care Surg. 2022 Jan 1;92(1):135-143. doi: 10.1097/TA.0000000000003401.

Abstract

BACKGROUND

Deviation from guidelines is frequent in emergency situations, and this may lead to increased mortality. Probably because of time constraints, 55% is the greatest reported guidelines compliance rate in severe trauma patients. This study aimed to identify among all available recommendations a reasonable bundle of items that should be followed to optimize the outcome of hemorrhagic shocks (HSs) and severe traumatic brain injuries (TBIs).

METHODS

We first estimated the compliance with French and European guidelines using the data from the French TraumaBase registry. Then, we used a machine learning procedure to reduce the number of recommendations into a minimal set of items to be followed to minimize 7-day mortality. We evaluated the bundles using an external validation cohort.

RESULTS

This study included 5,924 trauma patients (1,414 HS and 4,955 TBI) between 2011 and August 2019 and studied compliance to 36 recommendation items. Overall compliance rate to recommendation items was 71.6% and 66.9% for HS and TBI, respectively. In HS, compliance was significantly associated with 7-day decreased mortality in univariate analysis but not in multivariate analysis (risk ratio [RR], 0.91; 95% confidence interval [CI], 0.90-1.17; p = 0.06). In TBI, compliance was significantly associated with decreased mortality in univariate and multivariate analysis (RR, 0.85; 95% CI, 0.75-0.92; p = 0.01). For HS, the bundle included 13 recommendation items. In the validation cohort, when this bundle was applied, patients were found to have a lower 7-day mortality rate (RR, 0.46; 95% CI, 0.27-0.63; p = 0.01). In TBI, the bundle included seven items. In the validation cohort, when this bundle was applied, patients had a lower 7-day mortality rate (RR, 0.55; 95% CI, 0.34-0.71; p = 0.02).

DISCUSSION

Using a machine-learning procedure, we were able to identify a subset of recommendations that minimizes 7-day mortality following traumatic HS and TBI. These two bundles remain to be evaluated in a prospective manner.

LEVEL OF EVIDENCE

Care Management, level II.

摘要

背景

在紧急情况下,偏离指南的情况很常见,这可能导致死亡率增加。由于时间限制,严重创伤患者报告的最大指南依从率为 55%。本研究旨在从所有可用建议中确定一组合理的项目,以优化失血性休克 (HS) 和严重创伤性脑损伤 (TBI) 的结果。

方法

我们首先使用法国创伤数据库登记处的数据估计法国和欧洲指南的依从性。然后,我们使用机器学习程序将建议数量减少到最小,以遵循这些建议来最大限度地降低 7 天死亡率。我们使用外部验证队列评估这些捆绑包。

结果

这项研究纳入了 2011 年至 2019 年 8 月间的 5924 名创伤患者(1414 例 HS 和 4955 例 TBI),研究了 36 项推荐项目的依从性。总体推荐项目的依从率分别为 HS 患者的 71.6%和 TBI 患者的 66.9%。在 HS 中,单因素分析显示依从性与 7 天死亡率降低显著相关,但多因素分析无此相关性(风险比 [RR],0.91;95%置信区间 [CI],0.90-1.17;p = 0.06)。在 TBI 中,单因素和多因素分析均显示依从性与死亡率降低显著相关(RR,0.85;95% CI,0.75-0.92;p = 0.01)。对于 HS,该捆绑包包括 13 项推荐项目。在验证队列中,当应用该捆绑包时,患者的 7 天死亡率较低(RR,0.46;95% CI,0.27-0.63;p = 0.01)。在 TBI 中,该捆绑包包括 7 项推荐项目。在验证队列中,当应用该捆绑包时,患者的 7 天死亡率较低(RR,0.55;95% CI,0.34-0.71;p = 0.02)。

讨论

使用机器学习程序,我们能够确定一组最大限度地降低创伤性 HS 和 TBI 后 7 天死亡率的建议。这两个捆绑包仍需前瞻性评估。

证据水平

护理管理,II 级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验