Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P.R. China.
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P.R. China.
Science. 2021 Nov 19;374(6570):984-989. doi: 10.1126/science.abj8114. Epub 2021 Sep 23.
Similar to conventional materials, most multicomponent high-entropy alloys (HEAs) lose ductility as they gain strength. In this study, we controllably introduced gradient nanoscaled dislocation cell structures in a stable single-phase HEA with face-centered cubic structure, thus resulting in enhanced strength without apparent loss of ductility. Upon application of strain, the sample-level structural gradient induces progressive formation of a high density of tiny stacking faults (SFs) and twins, nucleating from abundant low-angle dislocation cells. Furthermore, the SF-induced plasticity and the resultant refined structures, coupled with intensively accumulated dislocations, contribute to plasticity, increased strength, and work hardening. These findings offer a promising paradigm for tailoring properties with gradient dislocation cells at the nanoscale and advance our fundamental understanding of the intrinsic deformation behavior of HEAs.
类似于传统材料,大多数多组元高熵合金(HEA)在获得强度的同时会失去延展性。在这项研究中,我们在具有面心立方结构的稳定单相 HEA 中可控地引入梯度纳米位错胞结构,从而在不明显损失延展性的情况下提高了强度。在施加应变时,样品级结构梯度会促使大量小层错(SF)和孪晶的高密度逐渐形成,这些是从丰富的低角度位错胞中形核的。此外,SF 诱导的塑性以及由此产生的细化结构,再加上密集积累的位错,有助于提高塑性、强度和加工硬化。这些发现为在纳米尺度上用梯度位错胞来调整性能提供了一个很有前景的范例,并推进了我们对 HEA 本征变形行为的基本理解。