Suppr超能文献

生物信息学分析鉴定癫痫的潜在关键基因。

Bioinformatic analysis identifies potential key genes of epilepsy.

机构信息

Department of Respiratory Medicine, Hainan General Hospital, Haikou, China.

Department of Neurology, Hainan General Hospital, Haikou, China.

出版信息

PLoS One. 2021 Sep 23;16(9):e0254326. doi: 10.1371/journal.pone.0254326. eCollection 2021.

Abstract

BACKGROUND

Epilepsy is one of the most common brain disorders worldwide. It is usually hard to be identified properly, and a third of patients are drug-resistant. Genes related to the progression and prognosis of epilepsy are particularly needed to be identified.

METHODS

In our study, we downloaded the Gene Expression Omnibus (GEO) microarray expression profiling dataset GSE143272. Differentially expressed genes (DEGs) with a fold change (FC) >1.2 and a P-value <0.05 were identified by GEO2R and grouped in male, female and overlapping DEGs. Functional enrichment analysis and Protein-Protein Interaction (PPI) network analysis were performed.

RESULTS

In total, 183 DEGs overlapped (77 ups and 106 downs), 302 DEGs (185 ups and 117 downs) in the male dataset, and 750 DEGs (464 ups and 286 downs) in the female dataset were obtained from the GSE143272 dataset. These DEGs were markedly enriched under various Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. 16 following hub genes were identified based on PPI network analysis: ADCY7, C3AR1, DEGS1, CXCL1 in male-specific DEGs, TOLLIP, ORM1, ELANE, QPCT in female-specific DEGs and FCAR, CD3G, CLEC12A, MOSPD2, CD3D, ALDH3B1, GPR97, PLAUR in overlapping DEGs.

CONCLUSION

This discovery-driven study may be useful to provide a novel insight into the diagnosis and treatment of epilepsy. However, more experiments are needed in the future to study the functional roles of these genes in epilepsy.

摘要

背景

癫痫是全球最常见的脑部疾病之一。它通常难以被正确识别,三分之一的患者对药物治疗有抵抗性。因此,特别需要确定与癫痫进展和预后相关的基因。

方法

在我们的研究中,我们下载了基因表达综合数据库(GEO)微阵列表达谱数据集 GSE143272。使用 GEO2R 识别差异表达基因(DEGs),其折叠变化(FC)>1.2,P 值<0.05,并将其分为男性、女性和重叠 DEGs 进行分组。进行功能富集分析和蛋白质-蛋白质相互作用(PPI)网络分析。

结果

从 GSE143272 数据集中总共获得了 183 个重叠的 DEGs(77 个上调和 106 个下调)、302 个男性数据集的 DEGs(185 个上调和 117 个下调)和 750 个女性数据集的 DEGs(464 个上调和 286 个下调)。这些 DEGs 在各种基因本体论(GO)术语和京都基因与基因组百科全书(KEGG)术语中明显富集。根据 PPI 网络分析,确定了 16 个以下的关键基因:男性特异性 DEGs 中的 ADCY7、C3AR1、DEGS1、CXCL1,女性特异性 DEGs 中的 TOLLIP、ORM1、ELANE、QPCT 和重叠 DEGs 中的 FCAR、CD3G、CLEC12A、MOSPD2、CD3D、ALDH3B1、GPR97、PLAUR。

结论

这项基于发现的研究可能有助于为癫痫的诊断和治疗提供新的见解。然而,未来还需要更多的实验来研究这些基因在癫痫中的功能作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2652/8459949/ccf7fb169143/pone.0254326.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验