Suppr超能文献

一种用于生物学和临床前研究的高度多重化定量磷酸化位点分析方法。

A highly multiplexed quantitative phosphosite assay for biology and preclinical studies.

机构信息

Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.

Novartis Institute of Biomedical Research, Cambridge, MA, USA.

出版信息

Mol Syst Biol. 2021 Sep;17(9):e10156. doi: 10.15252/msb.202010156.

Abstract

Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.

摘要

需要可靠的方法来量化不同途径中的动态信号变化,以便更好地了解疾病和药物治疗对细胞和组织的影响,但目前还缺乏这种方法。在这里,我们提出了 SigPath,这是一种靶向质谱(MS)检测方法,可测量 200 种具有生物学意义的磷酸化蛋白中的 284 个磷酸化位点。SigPath 以高通量和定量精度探测广泛的信号生物学。我们应用该检测方法来研究药物处理的癌细胞系、乳腺癌临床前模型和人类髓母细胞瘤肿瘤中磷酸信号的变化。除了验证先前的发现外,SigPath 还检测和量化了大量与疾病模型和人类肿瘤基线或药物干扰相关的新的差异调节磷酸化位点。我们的结果强调了 SigPath 监测磷酸化蛋白质组学信号事件的潜力,并提出了关于肿瘤发生、反应和对治疗的耐药性的机制假说。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b47e/8474009/2623d465c3d4/MSB-17-e10156-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验