Suppr超能文献

推断神经网络中的兴奋性和抑制性连接

Inferring Excitatory and Inhibitory Connections in Neuronal Networks.

作者信息

Ghirga Silvia, Chiodo Letizia, Marrocchio Riccardo, Orlandi Javier G, Loppini Alessandro

机构信息

Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia (IIT), Viale Regina Elena 291, 00161 Roma, Italy.

Engineering Department, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00154 Roma, Italy.

出版信息

Entropy (Basel). 2021 Sep 8;23(9):1185. doi: 10.3390/e23091185.

Abstract

The comprehension of neuronal network functioning, from most basic mechanisms of signal transmission to complex patterns of memory and decision making, is at the basis of the modern research in experimental and computational neurophysiology. While mechanistic knowledge of neurons and synapses structure increased, the study of functional and effective networks is more complex, involving emergent phenomena, nonlinear responses, collective waves, correlation and causal interactions. Refined data analysis may help in inferring functional/effective interactions and connectivity from neuronal activity. The Transfer Entropy (TE) technique is, among other things, well suited to predict structural interactions between neurons, and to infer both effective and structural connectivity in small- and large-scale networks. To efficiently disentangle the excitatory and inhibitory neural activities, in the article we present a revised version of TE, split in two contributions and characterized by a suited delay time. The method is tested on in silico small neuronal networks, built to simulate the calcium activity as measured via calcium imaging in two-dimensional neuronal cultures. The inhibitory connections are well characterized, still preserving a high accuracy for excitatory connections prediction. The method could be applied to study effective and structural interactions in systems of excitable cells, both in physiological and in pathological conditions.

摘要

从信号传输的最基本机制到记忆和决策的复杂模式,对神经网络功能的理解是现代实验和计算神经生理学研究的基础。虽然对神经元和突触结构的机械性认识有所增加,但对功能网络和有效网络的研究更为复杂,涉及涌现现象、非线性反应、集体波、相关性和因果相互作用。精细的数据分析可能有助于从神经元活动中推断功能/有效相互作用和连接性。转移熵(TE)技术尤其适合预测神经元之间的结构相互作用,并推断小规模和大规模网络中的有效连接性和结构连接性。为了有效地区分兴奋性和抑制性神经活动,在本文中我们提出了一种TE的修订版,它分为两部分,并具有合适的延迟时间。该方法在计算机模拟的小型神经元网络上进行了测试,该网络旨在模拟通过二维神经元培养中的钙成像测量的钙活性。抑制性连接得到了很好的表征,同时对兴奋性连接预测仍保持较高的准确性。该方法可应用于研究可兴奋细胞系统在生理和病理条件下的有效和结构相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0df/8465838/7c611e98a0fc/entropy-23-01185-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验